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I. INTRODUCTION

One practical problem that is typically faced in robotic
applications is the optimal parameterization of skills, for
example, finding the parameters of a controller. Also, skill
parameters may need to be adapted for new situations. The
aim is to execute a specific robotic manipulation task safely
but also efficiently.

Problem Statement. Find a parameterization θ∗ ∈ Θ that
maximizes the performance objective f : Θ→ R as

θ∗ = argmax
θ∈Θ

f(θ). (1)

Such a problem is usually referred to as black-box opti-
mization and can be solved for Euclidean parameter spaces
[3]. In this work, however, we assume that Θ is given
more generally by a Riemannian manifold and propose an
extension of the Covariance Matrix Adaptation Evolution
Strategy (CMAES) algorithm to solve (1).

II. BACKGROUND

CMAES: A common approach for parameter optimiza-
tion is Covariance Matrix Adaptation Evolution Strategy
(CMAES) [3]. This method is a stochastic gradient-free
approach which solves black-box optimization problems.

In CMAES, the idea is to sample parameter choices θ
from the domain by a Gaussian distribution θ ∼ N (m,Σ)
and scaled by a so called step-size σ which denotes the
amount of exploration. The parameters are then evaluated by
the objective function f(θ) and the distribution is updated
towards the best performing ones. This process is iterated
so that over time, parameter choices which promise a good
performance are sampled with high probability.

Riemannian Manifold: The optimization domains in
robotic manipulation often involve geometric properties that
cannot be represented in the Euclidean space. This includes
orientation represented as unit quaternions and stiffness
matrices. However, the generalization to Riemannian mani-
folds enables us to mathematically consider such geometric
optimization domains.

For each point in the Riemannian manifold x̂ ∈ M
there exists a Euclidean tangent space Tx̂M. The so-
called exponential map Expx̂ : Tx̂M

Expx̂−−−→ M transforms
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points from this tangent space into the manifold and the
logarithmic map Logx̂ : M

Logx̂−−−→ Tx̂M vice versa.
A third operation, called parallel transport, is used to

transform vectors from one tangent space to another and is
given by T : Tx̂M

T−→ TŷM. Applying parallel transport T
to vectors defined in Tx̂M results in vectors in TŷM while
keeping their inner product constant.

III. APPROACH

The original CMAES procedure [3] includes four steps
that are summarized in the following. As described for
each of them, some operations are only valid for Euclidean
spaces and need to be adjusted to operate on Riemannian
manifolds.

1) Sampling: Parameter samples s are generated by a
Gaussian distribution N (m̂,Σ), where the mean m̂ ∈M is
a point in the Riemannian manifold instead of a Euclidean
space. The covariance matrix Σ ∈ Tm̂M is defined in the
tangent space of m̂ so that points around m̂ are sampled by
the distribution. A scaling based on the step-size σ remains
as in the original CMAES.

In order to evaluate the performance of a sample s, we
use the exponential map to transform it into the manifold
ŝ = Expm̂(s). Then, a function evaluation f(ŝ) determines
the value of the objective function for this sample.

2) Mean Update: In order to compute the updated mean
m̂′ for the next iteration, all samples are sorted according
to their objective function value. Only a certain number of
best samples is considered in the following to calculate the
mean update.

More specifically, the Fréchet mean of the selected sam-
ples is computed here, i.e., the total distance to all samples
ŝ is minimized by

m̂′ = argmin
m̂∈M

∑
ŝ

d(m̂, ŝ) (2)

where d(m̂, ŝ) denotes the distance inM between the mean
and each of the samples.

An iterative algorithm is used to compute the Fréchet
mean in Riemannian manifold where m̂′ is approximated
over multiple iterations. Note that this is in contrast to
computing the weighted sum of all samples as sufficient
in the Euclidean space and done in the original CMAES.

3) Covariance Update: The adaptation of Σ follows the
procedure of the original CMAES except for the need to
perform a parallel transport operation of the eigenvectors em̂



of Σ and the current path variable pm̂c of a so called rank-1-
update r1 = pm̂

′

c pm̂
′

c

T
. This r1 update ensures a correlation

between generations. In other words, em̂ and pm̂c are com-
puted in Tm̂M with respect to the previous mean m̂. Then,
parallel transport is used to convert those parameters from
Tm̂M to Tm̂′M. Consequently, each variable is defined in
the current tangent space.

4) Step-size Update: Finally, also the update of the
step-size σ depends on a path variable pm̂σ . Similar to pm̂c ,
calculated for the covariance adaptation, pm̂σ needs to be
parallel transported to Tm̂′M for performing the update.

Summarizing, CMAES on Riemannian manifold works
by first sampling parameter choices s by a Gaussian dis-
tribution s ∼ N (m̂,Σ), whereby m̂ is represented in the
manifold. The samples s in the tangent space are then
transformed to samples ŝ in the manifold by the exponential
map. Afterwards, the objective value is determined and
sorted accordingly from best to worst. A certain number
of best samples is used to update the mean by an iterative
Fréchet mean. Σ as well as σ are updated as in the original
CMAES except for those elements which are computed in
the old tangent space. These elements need to be parallel
transported to the new tangent space.

IV. DISCUSSION

In order to evaluate CMAES on Riemannian manifold
two different experiments are conducted, see Fig. 1. The
aim of the first experiment is to insert a peg into a hole
by optimizing the pose of an end-effector such that the
contact force is minimized. The second experiment adapts
the orientation of an end-effector while moving to different
poses such that the joint velocity is minimized. In both
experiments, CMAES on Riemannian manifolds performs
better than the original CMAES suitable for Euclidean
parameter spaces which can be seen in the respective right
image in Fig. 1.

The motion profile experiment finds the optimum faster
when our approach is applied instead of the original
CMAES. In the peg insertion experiment, the number of
successfully inserted samples lies at around two third when
using this recent approach whereas applying the original
CMAES to this problem obtains a success rate of less than
half of the samples.

There are other methods which are suitable for black-
box optimization when parameters belong to a Riemannian
manifold. The work of Jaquier et al. [4] extends Bayesian
Optimization (BO) [5], another commonly used black-box
optimization method, to Riemannian manifolds by using
the Riemannian distance as a kernel distance for measuring
geometry-aware similarities in the parameter space. Further-
more, the minimization of the acquisition function takes
place on the manifold. The search direction for the next
query point is modified by parallel transport.

[1] adapts the original CMAES to Riemannian manifolds
to be exploited on 3D image reconstruction. This work
also parallel transports all necessary elements from the old

Fig. 1. The proposed method has been evaluated for robotic manipulation
tasks in simulation (top) and on a real robot (bottom).

tangent space to the new tangent space as our approach
proposes. Instead of using an iterative algorithm to compute
a Fréchet mean, however, only a weighted sum in the
tangent space is calculated for updating the mean. Another
difference lies in the application. Our approach considers
robotic applications whereas Colutto et al.’s [1] work is
applied on images.

Another recent work is proposed in the thesis by Fong
[2]. He proposes a framework which extends any Stochas-
tic Derivative-Free Optimization algorithm to Riemannian
manifolds and also tested the framework on CMAES. Here,
a difference to this approach can be discovered. Instead of
computing the mean by an iterative approach, the mean is
updated by the weighted sum.

V. CONCLUSION

In this work, CMAES is extended from the Euclidean
space to Riemannian manifolds such that robotic manipula-
tion tasks can be optimized properly. For evaluation, two
experiments are conducted and compared to the original
CMAES. As a result, the proposed CMAES on Riemannian
manifold outperforms CMAES on an approximation in the
Euclidean space in both experiments.
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