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Abstract—In this paper, we consider the problem of direct
policy search with policies represented by Gaussian mixture
models (GMMs). Due to its superior sample-efficiency, Bayesian
optimization (BO) has become a prominent to address robot
learning tasks. However, ignoring the respective geometry of
the policy parameter space can impair the sample-efficiency.
Hence, we propose to use a metric that acknowledges the space
of probability distributions. In particular, we construct a novel
stationary kernel based on the so-called probability product
kernel that can be used in Gaussian processes – a key ingredient
for BO. In preliminary experiments, we demonstrate that our
approach is able to address the aforementioned issues and
exhibits high potential for further research.

I. INTRODUCTION

Sample-efficiency is one of the key criteria for robot learning
in the real world to avoid wear and tear on the robot as well
as to reduce time for the required oversight during the learning
process. One particularly sample-efficient approach to the direct
policy search problem is BO [2], in which the policy parameters
are directly optimized based on the performance from rollouts
on the real system. A key component of BO is a probabilistic
surrogate model (e.g., Gaussian process (GP)) approximating
the unknown objective [3]. In the context of BO, the GP is
typically based on stationary kernels, i.e., kernels that only
depend on the distance between its arguments k(θ,θ′) =
k(d(θ,θ′)), where d(·, ·) denotes a metric on the parameter
space Θ 3 θ,θ′. The particular choice of d should reflect the
underlying geometry of Θ.

Contributions: In this paper, we develop a metric tailored
to GMMs with the purpose of improving BO’s performance
for direct policy search. In particular, the proposed metric
can be computed efficiently and in closed-form, is numerically
more stable compared to measures based on the KL-divergence,
readily identifies the most relevant mixture component of the
policy and implicitly reduces the search space’s volume by
exploiting the underlying geometry of the parameter space.

Related Work: Several works have considered non-
Euclidean metrics in kernel methods: Moreno et al. [7] propose
to use Jeffrey’s divergence between GMMs, but already mention
the numerical instabilities of the approach. Wilson et al. [9]
compute the distance between policy parameters in terms
of a KL divergence-based metric w.r.t. the resulting state
distributions. More recently, Jaquier et al. [5] extended BO to
Riemannian manifolds such that e.g. the geometry of positive
definite matrices is properly accounted for.
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Fig. 1: Exemplary 1-dim. Gaussian Mixture Model.

Preliminaries: The parameter vector θ representing the
policy contains the respective mixture components’ prior
probabilities, mean vectors and covariance matrices of a GMM.
By conditioning on a subset of the random variables, one readily
obtains a predictive model to encode the robot’s behaviour
[1]. Direct policy search seeks parameters θ∗ that optimize a
particular performance measure f(θ), to which end we employ
BO. For a tutorial on BO, we refer the reader to [3].

II. KERNEL DESIGN FOR GAUSSIAN MIXTURES

Consider the following simple example in Fig. 1, for which
the Euclidean metric fails to measure an appropriate distance
between GMMs: given are two 1-dimensional GMMs, each
with two mixture components of equal prior probability and
variance, but different means such that θ = [µ1, µ2] (left)
and θ′ = [µ2, µ1] (right), respectively. In fact, both models
represent the same underlying distribution, but the Euclidean
distance is non-zero. However, not every appropriate metric
(or divergence) between distributions can be used to construct
a valid kernel that fulfills Mercer’s condition [8]. Generally, it
is difficult to judge a kernel’s validity, but it is straightforward
to build complex kernels from simpler ones via the kernel
construction rules. Arguably the simplest kernel for inner
product spaces is just the inner product itself 〈θi,θj〉Θ. Hence,
a necessary (but not sufficient) condition for a metric leading
to a valid stationary kernel is that it is norm-induced, i.e.,
d(θ,θ′) =

√
‖θ − θ′‖Θ, where ‖ · ‖Θ is the norm induced by

the inner product 〈·, ·〉Θ.
In this paper, we are concerned with the distance between

probability distributions, GMMs in particular. To this end, we
construct a novel kernel based on the so-called probability
product kernel (PPK) [6]

kPPK(pθ, pθ′) =

∫
pθ(x)ρpθ′(x)ρ dx = 〈pρθ, p

ρ
θ′〉L2 , (1)

for ρ ∈ R≥0, which, in fact, is the definition of an inner product
between pρθ, p

ρ
θ′ in the space of square-integrable functions L2.



Fig. 2: Min. EV of the Gram
matrix for different distances.

Fig. 3: Left: Visualization of the (marginal) GMM and sampled resulting end-effector trajectories.
Center/Right: Inferred lengthscales for f1 and f2 from 20 independent experiments, respectively.

For the remainder of this paper, we assume ρ = 1 and for
ease of notation k(pθ, pθ′) = k(θ,θ′). For GMMs, we can
compute (1) analytically such that

dGMM(θ,θ′) =
√
〈θ,θ〉+ 〈θ′,θ′〉 − 2〈θ,θ′〉, with (2)

〈θ,θ′〉 =

K∑
k=1

K′∑
k′=1

πkπk′N (µk|µk′ ,Σk + Σk′). (3)

With the definition above, each mixture component’s influence
on the distance is mostly determined by its covariance matrix,
i.e., low-variance components contribute more to the distance
and vice versa for components with high variance. However,
the GP’s dependent variable might be highly sensitive to
small changes in the mean for high-variance components.
We therefore introduce lengthscale parameters in our metric
to account for this shortcoming of (3) and as such enable
automatic relevance determination (ARD) for the GP model,

〈θ,θ′〉Λ =

K∑
k=1

K∑
k′=1

πkπk′N
(µk
`k
|µ
′
k

`′k
,Σk + Σk′

)
, (4)

with Λ = [`1, . . . , `K ] denoting the lengthscales (inverse
relevance parameters) for each of the K mixture components.

III. PRELIMINARY RESULTS

Numerical Stability: We demonstrate that the proposed
metric (2) leads to a proper kernel resulting in a numerically
stable GP model as opposed to other metrics based on the
KL-divergence [7, 9]. To this end, we sample 20 3-dim.
GMMs and compute the minimum eigenvalue for the respective
Gram matrices K using the RBF kernel but different metrics
and varying lengthscale parameters. Since the KL divergence
between GMMs has no analytical form, we use standard
approximation techniques [4]. The results are shown in Fig. 2,
where the solid line and shaded areas represent the median
and 10th/90th percentiles across 20 independent experiments,
respectively. Note that the respective minimum eigenvalues of
the Gram matrices for the KL-based distances can become
negative, hence violating the positive definiteness of kernels.
In contrast, our approach leads to a valid kernel.

Automatic Relevance Determination: We demonstrate that
the introduced lengthscale parameters in (4) are able to identify
the most relevant mixture components for a given task. In

particular, we simulate rollouts for a planar 2-DoF robotic arm
following random policies (see gray lines in Fig. 3 (left), indi-
cating end-effector position) and evaluate each trajectory by two
different performance measures: f1(θ) = mint∈[0,T ] det J>t Jt
with Jt being the Jacobian of the robot’s joint configuration
at time t, f2(θ) = ‖xT − x̂‖2 measuring the end-effector’s
position xT at the end of the rollout with respect to a reference
point x̂. Note that for the respective objectives, different
components of the underlying GMM have larger influence. For
f1, the position of the second (orange) component gives rise
to joint configurations close to singularities whereas for f2 the
last (green) component determines the performance. Based on
the sampled policies θi and corresponding function values f1,2

i ,
we fit a GP with RBF kernel using our extended metric based
on (2) and (4) by maximizing the marginal log-likelihood. The
respective lengthscale parameters for both objectives from 20
independent experiments are shown in Fig. 3 (center and right).
Our model reliably identifies the most relevant components.

IV. CONCLUSION AND OUTLOOK

In this work, we propose a novel kernel that considers the
geometry of the space of GMMs. The application of this
method targets direct policy search with BO, in which the GP
can leverage the new kernel. We present promising results in
terms of numerical stability and detection of most relevant
mixture components. Future research focuses on deploying this
approach for actual policy search problems.
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