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Abstract—Body posture can greatly influence human per-
formance when carrying out manipulation tasks. Adopting an
appropriate pose helps us regulate our motion and strengthen
our capability to achieve a given task. This effect is also observed
in robotic manipulation where the robot joint configuration
affects not only the ability to move freely in all directions in
the workspace, but also the capability to generate forces along
different axes. In this context, manipulability ellipsoids arise as
a powerful descriptor to analyze, control and design the robot
dexterity as a function of the articulatory joint configuration.
This paper presents a new tracking control scheme in which the
robot is requested to follow a desired profile of manipulability
ellipsoids, either as its main task or as a secondary objective.
The proposed formulation exploits tensor-based representations
and takes into account that manipulability ellipsoids lie on the
manifold of symmetric positive definite matrices. The proposed
mathematical development is compatible with statistical methods
providing 4th-order covariances, which are here exploited to
reflect the tracking precision required by the task. Extensive
evaluations in simulation and two experiments with a real
redundant manipulator validate the feasibility of the approach,
and show that this control formulation outperforms previously
proposed approaches.

I. INTRODUCTION

Human arm kinematics plays a central role when humans
plan point-to-point reaching movements, where joint trajectory
patterns arise as a function of the visual target [13], indicating
that the task requirements influence the human arm posture.
This insight was also identified in more complex situations,
where not only kinematic but also other biomechanic fac-
tors affect the task planning [5]. For example, the human
central nervous system plans arm movements considering its
directional sensitivity, which is directly related to the arm
posture [18]. This allows humans to be mechanically resistant
to potential perturbations coming from obstacles occupying
the workspace. Interestingly, directional preferences of human
arm movements are characterized by a tendency to exploit
interaction torques for movement production at the shoulder
or elbow, indicating that the preferred directions are largely
determined by biomechanical factors [6].

Robotics researchers have also explored the impact of robot
posture on reaching movements and manipulation tasks (e.g.,
pushing, pulling, reaching). It is well known that by varying
the posture of a robot, we can change the optimal directions
for generating motion or applying specific forces. This has
direct implications in hybrid control, since the controller

capability can be fully realized when the optimal directions
for controlling velocity and force coincide with those dictated
by the task [4]. In this context, the so-called manipulability
ellipsoid [23] serves as a geometric descriptor that indicates
the ability to arbitrarily perform motion and exert a force along
the different task directions in a given joint configuration.

Manipulability ellipsoids have been used to measure the
compatibility of robot postures with respect to fine and coarse
manipulation [4], and to improve minimum-time trajectory
planning using a manipulability-aware inverse kinematics al-
gorithm [2]. Vahrenkamp et al. [21] proposed a grasp se-
lection process that favored high manipulability in the robot
workspace. Other works have focused on maximizing the
manipulability ellipsoid volume in trajectory generation algo-
rithms [8], and task-level robot programming frameworks [19],
to obtain singularity-free joint trajectories and high task-space
dexterity. Nevertheless, as stated in [12], solely maximizing
the ellipsoid volume to achieve high dexterity in motion may
cause a reverse effect on the flexibility in force.

The aforementioned approaches do not specify a desired
robot manipulability for the task. In contrast, Lee et al.
[11] proposed an optimization method for finding reach-
ing postures for a humanoid robot that achieved desired
(manually-specified) manipulability volumes. Similarly, a se-
ries of desired manipulability ellipsoids was predefined ac-
cording to Cartesian velocity and force requirements in dual-
arm manipulation tasks [12]. Note that despite authors in [11]
and [12] predetermined task-dependent robot manipulability,
their approaches overlooked an important characteristic of
manipulability ellipsoids, namely, the fact that they lie on
the manifold of symmetric positive definite (SPD) matrices.
This may influence the optimal robot joint configuration for
the task at hand. For instance, Rozo et al. [17] showed that
this geometric property improved a gradient-based redundancy
resolution method aimed at varying the robot posture to match
a desired manipulability ellipsoid as a secondary objective of
a trajectory tracking task.

In this paper we address the problem of tracking robot
manipulability ellipsoids from a novel geometry-aware control
perspective. The proposed manipulability tracking formulation
is inspired by the classical inverse kinematics problem in
robotics, where a first-order differential relationship between
the robot manipulability ellipsoid and the robot joints is



established, as explained in Section III-A. This relationship
demands to consider that manipulability ellipsoids lie on the
manifold of SPD matrices, which is here tackled by exploiting
tensor-based representations and differential geometry (see
Section II). This mathematical development is compatible
with statistical methods providing 4th-order covariances [17],
which are here exploited to reflect the manipulability tracking
precision required by the task, as shown in Section III-B.
This also allows our formulation to be easily combined with
manipulability transfer frameworks, where desired manipula-
bility ellipsoid profiles are obtained from demonstrations of a
specific task performed by either a human or a robot.

Note that we focus on kineto-static manipulability ellip-
soids, namely those obtained from differential kinematics and
statics relationships (using the duality principle). However, the
approach can be straightforwardly applied to other types of
manipulability measures such as those proposed in [1, 3, 7].
This opens the door to manipulability tracking problems
where different task requirements at kinematics and dynamics
levels are needed, which may determine time-varying optimal
directions for controlling a robot (e.g., velocity, force, accel-
eration) to perform successfully. We show that our approach
outperforms previous gradient-based approaches [17] in terms
of iterations needed to converge to a desired manipulability.
The proposed controller is showcased in a pushing task and a
peg-in-hole assembly using a 7-DoF robot (see Section IV).

II. BACKGROUND

A. Manipulability ellipsoids

Velocity and force manipulability ellipsoids introduced
in [23] are kinetostatic performance measures of robotic plat-
forms. They indicate the preferred directions in which force or
velocity control commands may be performed at a given joint
configuration. More specifically, the velocity manipulability
ellipsoid describes the characteristics of feasible motion in
Cartesian space corresponding to all the unit norm joint
velocities. The velocity manipulability of an n-DoF robot can
be found by using the kinematic relationship between task
velocities ẋ and joint velocities q̇,

ẋ = J(q)q̇, (1)

where q∈Rn and J ∈R6×n are the joint position and Jacobian
of the robot, respectively. The set of joint velocities of constant
(unit) norm ‖q̇‖2 =1 describing the points on the surface of
a hypersphere in the joint velocity space, can be mapped into
the Cartesian velocity space R6 with1

‖q̇‖2 = q̇>q̇ = ẋ>(JJ>)−1ẋ, (2)

by using the least-squares inverse kinematics relation
q̇=J†ẋ=J>(JJ>)−1ẋ. Equation (2) represents the robot
manipulability in terms of motion, indicating the flexibility of
the manipulator in generating velocities in Cartesian space.2

1Note that an additional scaling of the joint velocities may be included to
consider actuator boundaries.

2Dually, the force manipulability ellipsoid can be computed from the static
relationship between joint torques and Cartesian forces [23].

Note that the major axis of the velocity manipulability ellip-
soid M ẋ = (JJ>)−1 indicates the direction in which the
greater velocity can be generated, which is also the direction
in which the robot is more sensitive to perturbations. This
occurs due to the principal axes of the force manipulability
being aligned with those of the velocity manipulability, with
reciprocal lengths (eigenvalues) caused by the duality of
velocity and force (see [4] for details).

Other forms of manipulability ellipsoids exist, such as the
dynamic manipulability [22], which gives a measure of the
ability of performing end-effector accelerations along each
task-space direction for a given set of joint torques. This
has shown to be useful when the robot dynamics cannot be
neglected in highly dynamic manipulation tasks [3]. Recent
works have extended this measure to analyze the robot ca-
pacity to accelerate its center of mass for locomotion stabil-
ity [1, 7], showing the applicability of the aforementioned tools
beyond robotic manipulation.

As mentioned previously, any manipulability ellipsoid M
belongs to the set of symmetric positive definite (SPD) ma-
trices SD++ which describe the interior of the convex cone.
Consequently, our manipulability tracking formulation must
consider this particular characteristic in order to properly track
desired manipulability ellipsoids. We develop a geometry-
aware formulation that takes inspiration from the classical
inverse kinematics, by exploiting Riemannian manifolds and
tensor representations, which are introduced next.

B. Riemannian manifold of S++

The set of D×D SPD matrices SD++ is not a vector space
since it is not closed under addition and scalar product [15],
and thus the use of classical Euclidean space methods for
treating and analyzing these matrices is inadequate. A com-
pelling solution is to endow these matrices with a Riemannian
metric so that these form a Riemannian manifold.3 This metric
permits to define lengths of curves in the manifold. These
curves, called geodesics, are the generalization of straight
lines to Riemannian manifolds. Similarly to straight lines in
Euclidean space, geodesics are the minimum length curves
between two points on the manifold.

Intuitively, a Riemannian manifold M is a mathematical
space for which each point locally resembles a Euclidean
space. For each point p∈M, there exists a tangent space TpM
equipped with a positive definite inner product. In the case of
the SPD manifold, the tangent space at any point Σ ∈ SD++

is identified by the space of symmetric matrices SymD. The
space of SPD matrices can be represented as the interior of a
convex cone embedded in its tangent space SymD; see Fig. 1.
To utilize these tangent spaces, we need mappings back and
forth between TpM and M, which are known as exponential
and logarithmic maps.

The exponential map ExpΣ : TΣM→M maps a point L
in the tangent space to a point Λ on the manifold, so that it lies

3The original cone of SPD matrices has been changed into a regular and
complete (but curved) manifold with an infinite development in each of its
D(D + 1)/2 directions [15].



Fig. 1: Representation of the SPD manifold S2
++ embedded in

its tangent space Sym2. One point on the graph corresponds to a
matrix

(
α β
β γ

)
∈ Sym2. Points inside the cone, such as Σ and Λ,

belong to the manifold. L lies on the tangent space of Σ such that
L = LogΣ(Λ). The shortest path between Σ and Λ is the geodesic
represented as a purple curve in the graph. Note that it does not
correspond to the Euclidean path, depicted by the yellow line.

on the geodesic starting at Σ in the direction L and such that
the distance between Σ and Λ is equal to the distance between
Σ and L. The inverse operation is called the logarithmic map
LogΣ :M→ TΣM. Both operations are illustrated in Fig. 1.

Specifically, the exponential and logarithmic maps on the
SPD manifold corresponding to the affine-invariant distance

d(Λ,Σ) = ‖ log(Σ− 1
2 ΛΣ−

1
2 )‖F, (3)

are computed as (see [15] for details)

Λ = ExpΣ(L) = Σ
1
2 exp(Σ−

1
2LΣ−

1
2 )Σ

1
2 , (4)

L = LogΣ(Λ) = Σ
1
2 log(Σ−

1
2 ΛΣ−

1
2 )Σ

1
2 . (5)

In this paper, we exploit the Riemannian manifold frame-
work to compute the difference between manipulability el-
lipsoids considering that these belong to the set SD++. This
geometry-aware approach proves to be crucial for tracking ma-
nipulability ellipsoids in terms of accuracy and convergence,
beyond providing an appropriate mathematical treatment of
the tracking problem. Note that Riemannian geometry is used
in orientation tracking using unit quaternions [10] and has
also been successfully exploited in applications such as robot
motion optimization [16] and manipulability analysis of closed
chains [14].

C. Tensor representation

Tensors are generalization of matrices to arrays of higher
dimensions [9], where vectors and matrices may respectively
be seen as 1st and 2nd-order tensors. Tensor representation
permits to represent and exploit a priori data structure of
multidimensional arrays. In this paper, such representation
is mainly used to find the first-order differential relationship
between the robot joints and the robot manipulability ellipsoid
(1st- and 2nd-order tensors, respectively), which results in
a 3rd-order tensor. To do so, we first introduce the tensor
operations needed for our mathematical treatment.

1) The n-mode product: The multiplication of a tensor
X ∈RI1×...×In×...×IN by a matrix A∈RJ×In , known as the
n-mode product is defined as

Y = X ×n A ⇐⇒ Y(n) = AX(n), (6)

where X(n) ∈ RIn×I1I2...In−1In+1...IN is the n-
mode matricization or unfolding of tensor X .
Element-wise, this n-mode product can be written as
(X ×n A)i1...in−1jnin+1...iN =

∑
in

AjninXi1...in−1inin+1...iN .

2) Derivative of a matrix w.r.t a vector: In the following
identities, the matrix Y ∈RI×J is a function of x∈RK , while
A∈RL×I and B∈RJ×L are constant matrices. The derivative
of a matrix function Y with respect a vector variable x is a
third order tensor ∂Y

∂x ∈R
I×J×K such that(

∂Y

∂x

)
ijk

=
∂yij
∂xk

. (7)

When the matrix function Y is multiplied by a constant
matrix, the partial derivatives of Y are given by:

a) Left multiplication by a constant matrix:

∂AY

∂x
=
∂Y

∂x
×1 A (8)

Proof:(
∂AY

∂x

)
ljk

=
∂

∂xk

∑
i

aliyij =
∑
i

ali
∂yij
∂xk

b) Right multiplication by a constant matrix:

∂Y B

∂x
=
∂Y

∂x
×2 B

> (9)

Proof:(
∂Y B

∂x

)
ilk

=
∂

∂xk

∑
i

yijbjl =
∑
j

bjl
∂yij
∂xk

Finally, another useful operation for our manipulability
tracking formulation is the derivative of the inverse of the
matrix Y with respect to the vector x, which results in a third
order tensor, namely

∂Y −1

∂x
= −∂Y

∂x

>

×1 Y
−1 ×2 Y

−> (10)

Proof: We compute the derivative of the definition of the
inverse Y −1Y = I as
∂

∂x
(Y −1Y ) =

∂

∂x
(I) =⇒ ∂Y −1

∂x
×2Y

>+
∂Y

∂x
×1Y

−1 = 0.

Then, by isolating ∂Y −1

∂x , we obtain

∂Y −1

∂x
= −∂Y

∂x

>

×1 Y
−1 ×2 Y

−>.

The proposed geometry-aware manipulability tracking, in-
troduced in the next section, takes inspiration from the com-
putation of the robot Jacobian, which is computed from the
first-order time derivative of the robot forward kinematics. We
use the tensor representation to similarly compute the first-
order derivative of the function that describes the relationship
between a manipulability ellipsoid M and the robot joint
configuration q.



III. TRACKING MANIPULABILITY ELLIPSOIDS

Several manipulation tasks in robotics may demand the
robot to track a desired trajectory with a specific velocity
profile, or apply forces along different task-related axes. These
requirements are more easily achieved if the robot finds an
appropriate posture that permits to apply the required velocity
or force control commands. This problem can be viewed as
matching a set of desired manipulability ellipsoids that are
compatible with the task requirements, so that the robot can
perform the task successfully. The desired manipulability el-
lipsoid profile can be manually set by an expert or alternatively
learned from demonstration collected from either a human
or a robot [17]. In this section, we introduce an approach
that addresses this problem by exploiting the mathematical
concepts presented in Section II.

A. Geometry-aware manipulability tracking formulation

Given a desired profile of manipulability ellipsoids, the
goal of the robot is to adapt its posture to match the desired
manipulability, either as its main task or as a secondary
objective. We here propose a formulation inspired by the
classical inverse kinematics problem in robotics, which permits
to compute the desired robot joint values that lead the robot
to match a desired manipulability ellipsoid.

First, the manipulability ellipsoid is expressed as a function
of time as M(t) = f

(
J
(
q(t)

))
, for which we can compute

the first-order time derivative by applying the chain rule as

∂M(t)

∂t
=
∂f(J(q))

∂q
×3

∂q(t)

∂t

>

= J (q)×3 q̇
>, (11)

where J ∈ R6×6×n is the manipulability Jacobian of an n-
DoF robot, representing the linear sensitivity of the changes
in the robot manipulability ellipsoid Ṁ = ∂M(t)

∂t to the joint
velocity q̇ = ∂q(t)

∂t . Note that the computation of the manipula-
bility Jacobian depends on the type of manipulability ellipsoid
that is used. As our focus is on kineto-static manipulability
measures, we develop here the expressions for the force and
velocity manipulability ellipsoids.

The derivation of the manipulability Jacobian J F corre-
sponding to the force manipulability ellipsoid MF = JJ> is
straightforward by using (8) and (9) 4

J F =
∂J

∂q
×2 J +

∂J>

∂q
×1 J . (12)

Similarly, the manipulability Jacobian J ẋ corresponding
to the velocity manipulability ellipsoid M ẋ = (JJ>)−1 is
obtained using (8), (9) and (10),

J ẋ = −
(
∂J

∂q
×2 J +

∂J>

∂q
×1 J

)
×1 M

ẋ ×2 M
ẋ. (13)

A solution to control a robot so that it tracks a desired end-
effector trajectory is to compute the desired joint velocities
using the inverse kinematics formulation derived from (1). We

4In the remainder of the paper we drop dependencies on q to simplify the
notation.

use here a similar approach to compute the joint velocities q̇
to track a desired manipulability profile. More specifically, by
minimizing the L2 norm of the residuals

min
q̇
‖Ṁ −J ×3 q̇

>‖ = min
q̇
‖vec(Ṁ)− J>(3)q̇‖,

we can compute the required joint velocities of the robot to
track a profile of desired manipulability ellipsoids as its main
task with

q̇ = (J †(3))
>vec(Ṁ), (14)

where vec(Ṁ) is the vectorization of the matrix Ṁ .
Note that (14) allows us to define a controller to track a

reference manipulability ellipsoid as main task, similarly as
the classical velocity-based control that tracks a desired task-
space velocity. To do so, we propose to use a geometry-aware
similarity measure to compute the joint velocities necessary to
move the robot towards a posture where the distance between
the current manipulability ellipsoid Mt and the desired one
M̂t is minimum. Specifically, the difference between manip-
ulability ellipsoids is computed using the logarithmic map (5)
on the SPD manifold. Therefore, the corresponding controller
is given by

q̇t = (J †(3))
>KM vec

(
LogMt

(M̂t)
)
, (15)

where KM is a gain matrix.
Alternatively, for the case in which the main task of the

robot is to track reference trajectories in the form of Cartesian
positions or force profiles, the tracking of a manipulability
ellipsoids profile is assigned a secondary role. Thus, the
task objectives are to track the reference trajectories while
exploiting the robot kinematic redundancy to minimize the
difference between current and desired manipulability ellip-
soids. In this situation, a manipulability-based redundancy
resolution is carried out by computing a null-space velocity
that similarly exploits the geometry of the SPD manifold.
Thus, the corresponding controller is given by

q̇t = J†Kx (x̂t − xt)

+ (I − J†J) (J †(3))
>KM vec

(
LogMt

(M̂t)
)
. (16)

As in classical Jacobian-based methods, the use of the
pseudo-inverse of the manipulability Jacobian in (14) typically
requires to add a damping factor tuned as a function of the
smallest singular values of J , for numerical robustness. In or-
der to show the functionality of the proposed approach where
the goal of the robot is to reproduce a given manipulability
ellipsoid either as its main task or as a secondary objective,
we carried out experiments with a simulated 4-DoF planar
robot. In the first case, the robot is required to vary its joint
configuration to make its manipulability ellipsoid Mt coincide
with the desired one M̂ , without any task requirement at the
level of its end-effector. In the second case, the robot needs
to keep its end-effector at a fixed Cartesian position while
moving its joints to match the desired manipulability ellipsoid.
Fig. 2 shows how the manipulator configuration is successfully



Fig. 2: Illustrations of the manipulability tracking as main task (left)
and the manipulability-based redundancy resolution with Cartesian
position control as main task (right). The robot color goes from light
gray to black to show the evolution of the posture. Initial, final, and
desired manipulability ellipsoids are respectively depicted in blue,
red, and green. The top row shows close-up plots corresponding to
the initial and final manipulability ellipsoids.

adjusted so that Mt ' M̂ when the manipulability ellipsoid
tracking is considered as the main task or as a secondary
objective. These results show that the approach is suitable to
solve these two manipulability ellipsoid tracking problems.

B. Exploiting 4th-order precision matrix as controller gain

An open problem regarding the proposed approach is how
to specify the values of the gain matrix KM , which basically
determines how the manipulability tracking error affects the
resulting joint velocities. In this sense, we propose to define
KM as a precision matrix, which describes how accurately the
robot should track a desired manipulability ellipsoid. In learn-
ing from demonstration applications, such gain matrix would
typically be set as proportional to the inverse of the observed
covariance. This encapsulates variability information of the
task to be learned, and are represented as 4th-order tensors
when the variability is computed over an SPD manifold [17].
Our goal here is to exploit this information to demand the
robot a high precision tracking for directions in which low
variability is observed, and vice-versa.

As SPD matrices, or more broadly, any kind of matrix can
be seen as 2nd-order tensor, the computation of covariance
of matrices can be represented as a 4th-order covariance
tensor. Thus, the covariance S ∈ RD×D×D×D of N matrices
Xn ∈ RD×D is defined as

S =
1

N − 1

N∑
n=1

Xn ⊗Xn, (17)

where ⊗ denotes the tensor product between two tensors,
which is a generalization of the outer product.

We therefore introduce the required precision S−1 for a
given manipulability tracking task into the controllers defined
in Section III-A. To do so, we define the gain matrix KM as
a function of the precision tensor. Specifically, in order to take

into account the variation of each component of the manipu-
lability ellipsoid, we define KM as diagonal components of
the precision matrix S−1, with a proportion defined by

(KM )ii ∝ (S−1(1,2))ii. (18)

Alternatively, for cases in which the covariation of the manip-
ulability ellipsoid components is relevant, we may define the
controller gain matrix as a full SPD matrix, which is computed
from the matricization of the precision tensor S−1 along its
two first dimensions, with a proportion defined by

KM ∝ S−1(1,2). (19)

To show how precision matrices work as controller gains in
our manipulability tracking problem, we tested different forms
of KM aimed at reproducing a given manipulability ellipsoid
as a main task with a simulated 4-DoF planar robot. The robot
is required to move its joints to track a desired manipulability
ellipsoid, where the controller gain matrix KM is diagonal as
defined in (18). We tested four different precision tensors. In
the first case, an equal variability for all components of the
manipulability ellipsoid matrix is given. Then, the variability
along the first or the second main axis of the manipulability
ellipsoid, corresponding to the first and second diagonal ele-
ments of (18), is reduced. This means that the robot needs to
prioritize the tracking of one of the ellipsoid main axes over
the other. In the fourth test, the variability of the correlation
between the two main axes of the manipulability ellipsoid
is reduced. In this last case, the manipulability controller
prioritizes the tracking of the ellipsoid orientation over the
shape.

Figure 3 shows how the manipulator posture is adapted to
match the desired manipulability ellipsoid with a priority on
the component with the lowest variability. Note that when
high tracking precision is required for one of the main axes
of the ellipsoid, the robot initially seeks to fit the shape
of the ellipsoid along that specific axis, and subsequently
it matches the whole manipulability ellipsoid. When high
tracking precision is assigned to the correlation of the ellipsoid
axes, the robot first tries to align its manipulability with
the orientation of the desired ellipsoid, and afterwards tries
to match the whole manipulability. Note that the precision
tensor naturally affects the computed joint velocities required
to track a given ellipsoid, which consequently influences the
resulting motion of the end-effector as a function of the
precision constraints, as shown in Fig. 4. After convergence,
the desired manipulability ellipsoid is successfully matched
for all experiments. These results show that our geometry-
aware tracking permits to take into account the variability
information of a task to define the manipulability tracking
precision. Therefore, our formulation may be readily combined
with manipulability learning frameworks such as [17].

IV. EXPERIMENTS

We first evaluate in simulation the proposed approach by
comparing it to an Euclidean formulation. We then test the



(a) (b) (c) (d)

Fig. 3: Manipulability tracking as main task with diagonal gain matrices defined as a function of different precision tensors. Evolution of
the robot configuration and corresponding manipulability ellipsoids are respectively shown in the top and bottom plots. (a): all components
are given equal tracking precision. (b) and (c): tracking precision is higher for x1 and x2, respectively. The precision ratio between the
prioritized and the rest of components of the gain matrix is 10 : 1. (d): correlation between x1 and x2 axes is assigned a high tracking
accuracy. The precision ratio between the prioritized correlation and the other components of the gain matrix is 3 : 1. Initial and desired
manipulability ellipsoids are depicted in dark blue and green on all graphs. Time t is given in seconds.

Fig. 4: Evolution of the robot manipulability and end-effector trajec-
tory for different gain matrices when tracking a desired manipulability
ellipsoid is the main task. Top: Trajectories of the end-effector for
four different gain matrices along with the corresponding manipu-
lability ellipsoids. The initial manipulability ellipsoid is depicted in
dark blue. Bottom: Time evolution of the manipulability ellipsoids
obtained with four different gain matrices. The gain matrices and
manipulability ellipsoid colors correspond to those of Fig. 3. Position
x and time t are given in centimeters and seconds, respectively.

approach with a Baxter robot controlled to track a desired
manipulability ellipsoid as secondary objective.

A. Importance of geometry-awareness

The goal of this experiment is to evaluate the proposed
tracking formulation compared to a controller ignoring the
geometry of SPD matrices (i.e., treating the problem as
Euclidean), and the gradient-based approach of [17]. To do so,
we consider a planar 4-DoF robot that is required to keep its
end-effector at a fixed Cartesian position x̂ while minimizing

the distance between its current and desired manipulability
ellipsoids M and M̂ . Thus, the manipulability tracking task
becomes a secondary objective. The two following approaches
are considered for comparison with the proposed formula-
tion (16). Firstly, we analyze the corresponding Euclidean
manipulability-tracking controller

q̇t = J†Kx(x̂t−xt)+(I−J†J)(J †(3))
>KMvec(M̂t−Mt),

(20)
where the difference between two manipulability ellipsoids is
computed in Euclidean space, i.e., ignoring that manipulability
ellipsoids belong to the set of SPD matrices. Secondly, we
evaluate the gradient-based approach of [17] that implements
the controller

q̇t = J†Kx(x̂t − xt)− (I − J†J)α∇gt(q), (21)

where α is a scalar gain and

gt(q) = log det

(
M̂t +Mt

2

)
− 1

2
log det

(
M̂tMt

)
(22)

is a cost function based on Stein divergence (a distance-like
function on the SPD manifold [20]). The gain matrices KM

are fixed as identity matrices and the scalar gain is set to 1
for the comparison.

To alleviate the computational cost of the controllers using
tensor representations, we defined matricization and vectoriza-
tion operations using Mandel notation, such that

X(3)=

 vec (X :,:,1)
>

...
vec (X :,:,K)

>

 and vec

((
α β
β γ

))
=

 α
γ√
2β

 ,

(23)
for 2×2×K third-order tensors and 2×2 matrices.



(a) (b)

Fig. 5: Performance comparison of the different manipulability tracking formulations. Two cases are shown with varying initial robot
configuration and desired manipulability. The top left graph shows the convergence of the affine invariant distance between the current
and the desired manipulability ellipsoid over time. The distances for the Euclidean, geometry-aware and gradient-based approaches are
respectively depicted in yellow, red, and purple. The top right graph shows the initial and final posture of the robot along with the final
manipulability ellipsoids. The initial posture of the robot is depicted in light gray. The final postures and the corresponding manipulability
ellipsoids for the different methods are depicted in the same color as the distances. The desired manipulability ellipsoid is depicted in green.
The bottom row shows the evolution of the manipulability ellipsoids over time for the different approaches.

Figure 5 shows the convergence rate for the manipulability-
based redundancy resolution of the aforementioned ap-
proaches. Two tests were carried out by varying the initial
configuration of the robot and the desired manipulability el-
lipsoid. In both cases, both geometry-aware and gradient-based
approaches converge to a similar final robot configuration
(see Fig. 5a, 5b-top-right), with similar values of the affine-
invariant distance between the final and desired manipulability
ellipsoids (see Fig. 5a, 5b-top left). More importantly, the
proposed geometry-aware manipulability tracking approach
shows a faster convergence than the gradient-based method,
with a lower computational cost (3.5 ms and 4.2 ms per
time step, with non-optimized Matlab code on a laptop with
2.7GHz CPU and 32 GB of RAM). This notable difference
may be attributed to the fact that despite both methods take
into account the geometry of manipulability ellipsoids, our
approach is more informative about the kinematics of the robot
through the use of the manipulability Jacobian J (q).

Note that for some specific initial robot configura-
tions and desired manipulability ellipsoids, the Euclidean
manipulability-tracking controller (20) shows a slightly faster
convergence rate than our method (see Fig. 5a). However, this
Euclidean formulation leads to unstable behaviors in some
configurations (see Fig. 5b), where the distance between the
final and desired manipulability ellipsoids remains high com-
pared to the other approaches. This poor tracking performance
can be attributed to the fact that the Euclidean difference
between two SPD matrices is an approximation that is only
valid if the matrices are close enough to each other. Thus, the
Euclidean manipulability-tracking controller is only effective
if the current and desired ellipsoids are very similar.

The reported results not only showed that our approach
outperforms the gradient-based method, but also supported
our hypothesis that a geometry-aware manipulability controller
results in good tracking performance while providing stable
convergence regardless of the manipulability tracking error.
Furthermore, our controller permits to directly exploit the
variability information of a task, given in the form of a 4th-
order covariance tensor, through the gain matrix of the con-
troller. This allows the robot to exploit the tracking precision
required while matching a manipulability ellipsoid either as
main or secondary objective. This operation is not available
in the gradient-based method used for comparison, since the
corresponding controller gain is a scalar.

B. Experiments with the Baxter robot
The performance of the proposed controller was tested in

a pushing task and a peg-in-hole task (plugging an electric
cable into an power socket), achieved by the 7-DoF arm of
the Baxter robot. In the first experiment, the robot is required
to match a desired manipulability ellipsoid aligned with a force
that is perpendicularly applied to a wall, while the robot end-
effector can freely move on the wall plane (see Fig. 6b). This
task aims at emulating how humans vary their body posture
when applying a force with known direction but unknown
amplitude to successfully push an object. In this case, the
robot controller is defined as (16), where the desired robot
position x̂ only considers the constraint of being on the wall
plane, while M̂t corresponds to a force manipulability whose
main axis is orthogonal to the wall and kept constant over the
course of the task.

Figure 6a shows the resulting manipulability using the
redundancy resolution controller (16). As expected, the robot



modified its joint configuration in order to match, as accurately
as possible, the desired force manipulability, therefore adopt-
ing a posture compatible with the force requirements of the
pushing task. Note that the matching can in this experiment
only be achieved partially, because the robot is also required
to keep a position constraint at the level of its end-effector,
and therefore the joints configuration to match the desired ma-
nipulability is restricted to avoid interference with the primary
objective. In order to verify that the robot found an appropriate
pose to match the desired manipulability while fulfilling the
position constraint, we replaced the manipulability tracking
term in (16) by joint velocity commands driven by Brownian
noise. This test, carried out in simulation for ten minutes,
allowed us to explore the space of possible poses satisfying
the primary objective, for which corresponding manipulability
ellipsoids were computed. The minimum distance between the
computed and desired manipulability ellipsoids obtained in
this test coincided with the distance achieved by our controller.

In the peg-in-hole scenario, the robot first needs to track
a specific Cartesian trajectory to approach a hole and sub-
sequently insert a peg into it, as shown in Fig. 6. Desired
manipulability ellipsoids were defined according to the task
requirements for the two different parts of the peg-in-hole
process. Initially, a desired velocity manipulability is aligned
with the direction of motion of the end-effector governed by
the reference trajectory. Then, a desired force manipulability
is set to be aligned with the force applied to insert the
peg, which is executed at the end of the task. Note that
both alignments refer to the major axis of the ellipsoids.
Similarly as the pushing task, the robot used the redundancy
resolution controller (16), where x̂ was defined as the desired
Cartesian trajectory to track, while M̂t was set based on the
aforementioned velocity and force manipulability ellipsoids
required by the task.

In order to show the effects of the manipulability tracking
controller on the robot posture over the course of the task,
we also executed the peg-in-hole experiment with KM = 0,
which means that the manipulability tracking was fully dis-
abled. A small difference between the robot postures can
be observed during the approaching part, which shows how
the manipulability controller influences the trajectory tracking
phase. More notably, the robot significantly varied its posture
when the insertion part took place, so that its manipulability
coincided as accurately as possible with the desired force ma-
nipulability ellipsoid. This variation of the joint configuration
consequently allows the robot to adopt a posture compatible
with the control force required along the vertical direction
of the task. Videos of the experiments accompany this paper
(https://youtu.be/J4Ej4j6rhdY) and source codes are available
at https://github.com/lrozo/ManipulabilityTracking.

V. CONCLUSIONS AND FUTURE WORK

This paper presented a novel approach to track robot ma-
nipulability ellipsoids. Our work extends the classical inverse
kinematics problem to manipulability ellipsoids, by establish-
ing a mapping between a change of manipulability ellipsoid

(a)

(b) (c)

(d) (e)

Fig. 6: (a) Pushing task: The left graphs show the initial, final,
and desired manipulability ellipsoids respectively depicted in blue,
red, and green. The right graph shows the evolution of the distance
between the current and desired manipulability ellipsoids over time.
(b) Pushing task: the initial and final pose of the robot are respectively
depicted by purple and orange dots on the elbow and wrist bend
joints. (c-e) Insertion task: the poses of the robot obtained with and
without manipulability tracking are respectively depicted by yellow
and blue dots on the elbow and wrist bend joints when the robot
(c) approaches the hole, (d) prepares to insert the peg, (e) ends the
insertion of the peg in the hole.

and the robot joint velocity. To do so, we exploited tensor rep-
resentation and Riemannian manifolds to obtain a geometry-
aware manipulability tracking controller. This enables the
robot to modify its posture so that its manipulability ellipsoid
matches a desired one, either as a main control task or as
a redundancy resolution problem where the manipulability
tracking is viewed as a secondary objective. We showed
that the proposed formulation outperforms previous gradient-
based approaches and provides a faster convergence rate.
Furthermore, we showed that our approach is compatible with
statistical methods providing 4th-order covariances, allowing
us to exploit task variations to characterize the precision of
the manipulability tracking problem, with stronger tracking
along low variability directions. As future work, we plan to
combine the proposed approach with learning from demon-
stration techniques, thus extending our work to manipulability
transfer problems such as [17]. We will explore the use
of our formulation in more complex tasks involving full
6D manipulability ellipsoids, and humanoid robot scenarios
requiring to track a manipulability ellipsoid at the center of
mass or zero-moment point [1, 7].

https://youtu.be/J4Ej4j6rhdY
https://github.com/lrozo/ManipulabilityTracking
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[1] M. Azad, J. Babič, and M. Mistry. Dynamic manipula-
bility of the center of mass: A tool to study, analyse and
measure physical ability of robots. In IEEE Intl. Conf.
on Robotics and Automation (ICRA), pages 3484–3490,
2017.

[2] P. Chiacchio. Exploiting redundancy in minimum-time
path following robot control. In American Control
Conference, pages 2313–2318, 1990.

[3] P. Chiacchio, S. Chiaverini, L. Sciavicco, and B. Sicil-
iano. Reformulation of dynamic manipulability ellipsoid
for robotic manipulators. In IEEE Intl. Conf. on Robotics
and Automation (ICRA), pages 2192–2197, 1991.

[4] S. Chiu. Control of redundant manipulators for task
compatibility. In IEEE Intl. Conf. on Robotics and
Automation (ICRA), pages 1718–1724, 1987.

[5] I. Cos, N. Bélanger, and P. Cisek. The influence of
predicted arm biomechanics on decision making. Journal
of Neurophysiology, 105(March):3022–3033, 2011.

[6] N. Dounskaia, W. Wang, R. L. Sainburg, and A. Przy-
byla. Preferred directions of arm movements are inde-
pendent of visual perception of spatial directions. Exper-
imental Brain Research, 232(2):575–586, 2014.

[7] Y. Gu, G. Lee, and B. Yao. Feasible center of mass
dynamic manipulability of humanoid robots. In IEEE
Intl. Conf. on Robotics and Automation (ICRA), pages
5082–5087, 2015.

[8] L. Guilamo, J. Kuffner, K. Nishiwaki, and S. Kagami.
Manipulability optimization for trajectory generation. In
IEEE Intl. Conf. on Robotics and Automation (ICRA),
pages 2017–2022, 2006.

[9] T. Kolda and B. Bader. Tensor decompositions and
applications. SIAM Review, 51(3):455–500, 2009.

[10] E. Kraft. A Quaternion-based Inscented Kalman Filter
for Orientation Tracking. In Proc. of the Intl. Conf. on
Information Fusion, pages 47–54, 2003.

[11] I. Lee and J. Oh. Humanoid posture selection for
reaching motion and a cooperative balancing controller.
Journal of Intelligent and Robotics Systems, 8(3-4):301–
316, 2016.

[12] S. Lee. Dual redundant arm configuration optimization
with task-oriented dual arm manipulability. IEEE Trans-
actions on Robotics and Automation, 5(1):78–97, 1989.

[13] P. Morasso. Spatial control of arm movements. Experi-
mental Brain Research, 42:223–227, 1981.

[14] F. C. Park and J. W. Kim. Manipulability of closed
kinematic chains. ASME Journal of Mechanical Design,
120(4):542–548, 1998.

[15] X. Pennec, P. Fillard, and N. Ayache. A Riemannian
framework for tensor computing. Intl. Journal on Com-
puter Vision, 66(1):41–66, 2006.

[16] N. Ratliff, M. Toussaint, and S. Schaal. Understanding
the geometry of workspace obstacles in motion optimiza-
tion. In IEEE Intl. Conf. on Robotics and Automation
(ICRA), pages 4202–4209, 2015.

[17] L. Rozo, N. Jaquier, S. Calinon, and D. G. Caldwell.
Learning manipulability ellipsoids for task compatibility
in robot manipulation. In IEEE/RSJ Intl. Conf. on
Intelligent Robots and Systems (IROS), pages 3183–3189,
2017.

[18] P. Sabes and M. Jordan. Obstacle avoidance and a per-
turbation sensitivity model for motor planning. Journal
of Neuroscience, 17:7119–7128, 1997.

[19] N. Somani, M. Rickert, A. Gaschler, C. Cai, A. Perzylo,
and A. Knoll. Task level robot programming using
prioritized non-linear inequality constraints. In IEEE/RSJ
Intl. Conf. on Intelligent Robots and Systems (IROS),
pages 430–437, 2016.

[20] S. Sra. A new metric on the manifold of kernel matrices
with application to matrix geometric means. Neural
Information Processing Systems, pages 144–152, 2012.

[21] N. Vahrenkamp, T. Asfour, G. Metta, G. Sandini, and
R. Dillmann. Manipulability analysis. In IEEE/RAS Intl.
Conf. on Humanoid Robots (Humanoids), pages 568–
573, 2012.

[22] T. Yoshikawa. Dynamic manipulability of robotic manip-
ulators. Journal of Robotic Systems, 2:113–124, 1985.

[23] T. Yoshikawa. Manipulability of robotic mechanisms.
Intl. Journal of Robotics Research, 4(2):3–9, 1985.


	Introduction
	Background
	Manipulability ellipsoids
	Riemannian manifold of S++
	Tensor representation
	The n-mode product
	Derivative of a matrix w.r.t a vector


	Tracking Manipulability Ellipsoids
	Geometry-aware manipulability tracking formulation
	Exploiting 4th-order precision matrix as controller gain

	Experiments
	Importance of geometry-awareness
	Experiments with the Baxter robot

	Conclusions and Future Work

