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Abstract—Enabling robots to quickly learn manipulation skills
is an important and yet challenging problem. In industrial
settings, this is potentially even more challenging given the
complexity of tasks involved. Ideally, such manipulation skills
should be flexible in order to adapt either to the actual con-
figurations of the objects and of the robot or to new tasks.
Furthermore, to accomplish complex manipulation tasks, the
robots, rather than learning very complex skills, should be able
to sequence several simple skills. In this work, we propose to
sequence generic robot manipulation skills encoded by learning
from demonstration (LfD) to achieve complex manipulation
tasks. Our sequencing approach smoothly blends manipulation
skills together, thus humans only need to demonstrate simpler
skill primitives. This reduces the cognitive load on the human
demonstrator, as Kineshtetic teaching of complex manipulation
skills is prone to errors. Given a task goal and a high-level
plan (possibly provided by a human operator or by a high level
planner), our method generates smooth robot trajectories (in task
space) to complete the manipulation objective.

I. INTRODUCTION

Deploying service robots in daily household environments
or in highly flexible manufacturing sites is promising, but also
highly challenging [1]. The challenges arise in many different
sub-fields of robotics, e.g., perception [3], motion planning [7]],
mapping and navigation [8], human-robot interaction [5]. In
this work, we address two of these challenges.

First, it is almost impossible for robot manufacturers to pre-
program all robot capabilities (referred to as skills) that final
users may potentially require from the robot. Hence, to avoid
inquiring engineers whenever a new skill is needed, it is crucial
to provide an easy and efficient method with which laymen
can teach the robot new skills. Simply recording and replaying
a demonstrated trajectory is often insufficient because changes
in the environment, such as varying robot and/or object poses,
would render any attempt unsuccessful. In other words, the
robot needs to recognize and encode the intentions behind
these demonstrations and, more importantly, to generalize over
unforeseen situations.

Many learning-from-demonstration (LfD) frameworks have
shown great improvements in this aspect. Compared to hard-
coded alternatives, they embed extracted knowledge into prob-
abilistic models. Examples are probabilistic motion primi-
tives (ProMPs) [9], Stable Estimators of Dynamical Systems
(SEDS) [6] and Task-Parameterized Gaussian Mixture Models
(TP-GMMs) [2]. However, most of these approaches train

Fig. 1: Left: Learned 5-states HSMM for skill “grasp” in 2-D, where
demonstration data are labeled in color by the associated states.
Right: transition and duration functions of the HSMM. Arrows color
intensity is proportional to the learned transition probability, where
black and light gray respectively depict high and low probabilities.

models specifically for each skill instantiation. For instance,
“grasp the work piece from the top” and “grasp the work piece
from the side” are usually treated as two separate skills and,
thus, different models are trained. Clearly, this not only greatly
decreases the teaching efficiency, but also significantly limits
the reusability of each skill.

In contrast, one would like to learn general and potentially
reusable skills. However, the more general each skill is, the
more challenging it is to sequence skills in an appropriate way.
For example, a general grasping skill would be able to grasp
an object from different sides, but different instantiations of
this skill are needed depending on the following actions.

To tackle this problem, we propose a method to adapt skill
parameters given a sequence of skills. This fusion significantly
reduces human teaching and modeling efforts, while ensuring
high degree of flexibility and re-usability of learned skills.
Hence, the main contributions of this paper are:

« (i) to enable robot learning of general skills by extending
existing work on task-parameterized probabilistic models.
« (ii) to present a novel algorithm for the sequencing of
several skills to fulfill, with maximum probability of
successful task completion, a given high-level task plan.

II. SKILL LEARNING

In this work we combine two probabilistic modeling ap-
proaches to learn flexible skills: Task Parametrized Gaussian
Mixture Models (TP-GMMs) and Hidden semi-Markov Mod-
els (HSMM). The former are a variation of standard GMMs
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frame p. The latter, previosuly used for speech synthesis [12],
extend standard HMMs by embedding termporal information
of the underlying stochastic process.

A. Task-Parametrized Hidden Semi-Markov Models

Recently, TP-HSMMs have been successfully used for robot
skill encoding to learn spatio-temporal features of the demon-
strations [[10]. More specifically, a TP-HSMM consists of
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where ayp is the transition probability from state k to h;
(1P, oP) describe the Gaussian distributions for the duration
of state k, i.e., the probability of staying in k for a certain
number of steps; {my, {p{", P 1}, are the parameters
of the TP-GMM for each state k£ and each task-relevant coordi-
nate system p (e.g., object poses, world coordinate, etc.). The
GMM components describe the emission probability encoding
N demonstrated trajectories {{£, ;}/_,}/*, consisting of robot
end-effector poses and robot hand states.

As shown in [10], the probability of data point £, belonging
to state k (i.e., sy = k) is given by the forward variable

ai(k) = p(s; = k, {56}5:1):

t—1 K

a(k) =Y X o r(Wan N(rlui o) ob (@)
T7=1h=1

where of = [[,_, . N(&lfssr, Bex) is the emission

probability. Furthermore, the same forward variable can also
be used during reproduction to predict future steps until 7. In
this case however, since future observations are not available,
only transition and duration information are used by setting
N (&g Ze) = 1 forall k and £ > ¢ in @) [II]. At
last, the sequence of the most-likely states s} = s7s3 - sh
is determined by choosing s; = arg maxy oy (k), V1 <t < T.
The future state sequence can be used in an optimal control
problem to retrieve the smooth robot trajectory, which can be
executed on the real robot.

III. SEQUENCING TP-HSMMs

TP-HSMMs are able to encode multi-modal demonstrations,
and thus, more general skills. For example, “grasp the work
piece from the top” and “grasp the work piece from the side”
are two modes of the “grasp the work piece” skill (Fig. [I).

Given the model of a single skill, the forward variable
provides the most likely state sequence until its termination.
However, when dealing with a sequence of skills (from a
human operator or from a task planner) we have to (i)
cascade all TP-HSMMs into a “super-HSMM” of the complete
manipluation skill and (ii) find the most likely state sequence
of the super-HSMM, from initial state &, to final state 5% at
time 7. Note, that executing skills independent of each other

(by rolling out the forward variable) does not guarantee that
the final robot state is E%.

Since the transition from one skill to the next is never
demonstrated, we propose to compute such transition proba-
bilities from the K L(+||-) divergence of emission probabilities
between the sets of final and starting states. Particularly,
consider two consecutive skills a} and a}, ; in a}. The
transition probability from one final state f of the first skill to
one starting state ¢ of the consecutive skill is given by
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with blending constant « € R™. This process is repeated for
all pairs of starting and final states between consecutive skills
in a},.

Note that the forward variable introduced in the previous
section allows us to compute the sequence of marginally most
probable states, while we are looking for the jointly most
probable sequence of states given the last observation é‘dT. As
a result, when using (2)) there is no guarantee that the returned
sequence s7 will match both the spatio-temporal patterns of
the demonstrations and the final observation. To overcome
this issue, we rely on a modification of the Viterbi algorithm
presented in [4] which (i) works on HSMM instead of HMM;
and more importantly (ii) most observations, except first and
last, are missing. Specifically, in the absence of observations
the Viterbi algorithm becomes
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At each time ¢ and for each state j, the arguments maximizing
0:(j) are recorded and a simple backtracking procedure can
be used to find the most probable state sequence s7.

IV. SUMMARY

In this work we have shown how to combine probabilis-
tic modeling and, in particular, TP-HSMM with a modified
Viterbi algorithm for flexible skill learning and sequencing.
To conclude, it is worth highlighting the importance of skills
duration encoding naturally provided by the HSMM when
skills sequencing is required. Indeed, the duration probabilities
of the HSMM encode the temporal patterns observed across
demonstrations of a single skill, for all its different instanti-
ations. This temporal information is nicely exploited by the
Viterbi algorithm to provide a sequence of states, consistent
with the demonstrations. This would not be possible if explicit
duration model are not used, as for standard TP-GMMs or TP-
HMMs. In this latter case, the most probable states sequence
would force the robot to visit each HMM state one single
time step regardless the demonstrated temporal patterns, as
the algorithm is only given the initial and final observations.
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