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Abstract

The new generation of smarter and safer robots
aimed at assisting humans in industries and homes
demands to innovate the ways in which these ma-
chines are designed and controlled. In this context,
one of the biggest challenges is to empower these
collaborative robots with a wide range of learning
and adaptation capabilities so that they can easily
assist humans in a vast variety of scenarios, rang-
ing from assembly lines to health-care facilities. In
this paper we propose to teach a collaborative robot
reactive and proactive behaviors that exploit the in-
teraction dynamics between the robot and the user.
We call the proposed approach Adaptive Duration
Hidden-Semi Markov Model (ADHSMM) that en-
ables the robot to both react to the user actions and
lead the task when needed. ADHSMM is used to
retrieve a sequence of states governing a trajectory
optimization technique that provides the reference
and gain matrices to the robot controller. The pro-
posed framework is tested in handover and trans-
portation tasks using a 7 DOF backdrivable manip-
ulator.

1 Introduction
In contrast to industrial robots, which have been caged to
keep humans safe and out of harm’s way, collaborative robots
are being designed to work alongside humans, assisting them
with a variety of tasks. This entails a close – physical – in-
teraction between robots and humans, which may take place
in highly unstructured environments, such as offices, homes,
and healthcare facilities, among others. In consequence, col-
laborative robots are required to safely interact with their
users, adapt to their needs, understand their actions, and be
easily trainable to handle short runs of different tasks. There-
fore, learning and adaptation capabilities are crucial so that
this new generation of robots can perform naturally.

Programming by demonstration (PbD) is a promising so-
lution to teach robots how to carry out a task from several
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examples given by a teacher [Billard et al., 2008]. This ap-
proach can also be used to naturally learn how to collaborate
and interact with humans in a large range of tasks and scenar-
ios [Rozo et al., 2016]. In this paper, PbD is exploited to en-
dow a robot with collaborative behaviors (reactive and proac-
tive) that are learned from kinesthetic demonstrations show-
ing the interaction dynamics between robot and user. Specif-
ically, reactive behaviors refer to actions that are conditioned
on the interaction with the user, allowing the robot to adapt to
the user movements. Proactive behaviors involve taking the
lead of the task by carrying out self-initiated actions that ex-
ploit the taught knowledge. In order to provide the robot with
these behaviors, we propose to learn a model of the collabora-
tive task with a modified version of the Hidden Semi-Markov
Model [Yu, 2010] where the duration probability distribution
is adapted online according to the interaction, which permits
to shape the temporal dynamics of the task as a function of
user actions.

Several works have focused on teaching robots collabora-
tive roles that are purely reactive to the partner actions. Amor
et al., [2013] proposed to learn separate models of two per-
sons interacting during a collaborative task, encapsulating the
adaption of their behaviors to the movements of the respec-
tive partner. One of these models was then transferred to
the robot so that it is able to autonomously respond to the
behavior of its user. Maeda et al., [2015] proposed to use
probabilistic interaction primitives [Paraschos et al., 2013] to
learn collaborative movements that need to be coordinated
with the user actions by exploiting the correlations between
human and robot trajectories. At a higher level task repre-
sentation, Wilcox et al., [2012] proposed an adaptive algo-
rithm for handling HRC tasks where the temporal behavior is
adapted online based on the user preferences. Their method
is built on dynamic scheduling of simple temporal problems
and formulated as a nonlinear program considering person-
specific workflow patterns. In contrast to our learning frame-
work, the aforementioned approaches only provide the robot
with reactive behaviors, that is, without proactive behaviors
learned during the demonstrations of the task.

Other works have exploited PbD to teach collaborative
robots follower and leader roles.1 Evrard et al., [2009] pro-

1A leader role is considered a proactive behavior since the robot
exploits the task knowledge to take the lead during execution.



posed to use Gaussian mixture models (GMM) and Gaussian
mixture regression (GMR) to respectively encode and repro-
duce these types of behaviors. Medina et al., [2011] endowed
a robot with a cognitive system providing segmentation, en-
coding and clustering of collaborative behavioral primitives,
that incrementally updated during reproduction. One of the
main differences with respect to [Evrard et al., 2009] is that
the robot starts behaving as a follower and its role progres-
sively becomes more proactive as it acquires more knowledge
about the task. Li et al., [2015] addressed the role allocation
problem through a formulation based on game theory. A con-
tinuous role adaptation is achieved by modifying the contri-
bution of the human and the robot in the minimization of a
linear quadratic cost, according to the disagreement between
them. Similarly, Kulvicius et al., [2013] used dynamic move-
ment primitives in HRC where interaction forces were con-
sidered. The learning problem was treated as that of finding
an acceleration-based predictive reaction for coupled agents,
in response to force signals indicating disagreements due to
obstacle avoidance or different paths to follow.

Our approach is similar to the foregoing works in the sense
that it provides the robot with both reactive and proactive be-
haviors that are learned from demonstrations. However, un-
like [Li et al., 2015] and [Kulvicius et al., 2013], the behav-
ior in the approach that we propose is not a function of the
partners disagreement, but instead depends on the interaction
dynamics of the task, that is, temporal patterns observed dur-
ing the demonstration phase, and the way the temporal dy-
namics is shaped by the interaction with the human partner.
Our controller shares similarities with the approach presented
by [Li et al., 2015], with the difference that the role alloca-
tion is not directly affecting the robot control input, but is
instead driven by a linear quadratic regulator. Additionally,
our time-independent trajectory retrieval approach provides
gain matrices that exploit the variability of the task and shape
the robot compliance accordingly.

The rest of the paper is organized as follows: Section 2
presents the proposed framework for learning reactive and
proactive collaborative behaviors. Section 3 describes the
handover and transportation task, which is used to evalu-
ate the proposed algorithm. Finally, conclusions and future
routes of research are given in Section 4.

2 Adaptive Duration Hidden Semi-Markov
Model (ADHSMM)

A hidden Markov model (HMM) is characterized by an ini-
tial state distribution Πi, a transition probability matrix ai,j ,
and an emission distribution for each state in the model, com-
monly expressed as a Gaussian distribution with mean µi and
covariance matrix Σi. In HMM, the self-transition probabil-
ities ai,i only allow a crude implicit modeling of the number
of iterations that we can expect to stay in a given state i before
moving to another state. Indeed, the probability of staying d
consecutive time steps in a state i follows the geometric dis-
tribution (see for example [Rabiner, 1989])

Pi(d) = ad−1
i,i (1− ai,i), (1)

decreasing exponentially with time.

Figure 1: Adaptive duration Hidden-Semi Markov Model.

Variable duration modeling techniques such as the hidden
semi-Markov model (HSMM) sets the self-transition proba-
bilities ai,i of the HMM to zero, and replaces it with an ex-
plicit model (non-parametric or parametric) of the relative
time during which one stays in each state, see for example
[Yu and Kobayashi, 2006; Zen et al., 2007b].

Since the state duration is always positive, its distribution
should preferably be modeled by a function preserving this
property. Thus, it is here proposed to use a univariate normal
distributionN (µD

i ,Σ
D
i ) with mean µD

i and associated covari-
ance matrix ΣD

i to model the logarithm of the duration, which
is equivalent to the use of a lognormal distribution to fit the
duration data. Indeed, if d is lognormally distributed, log(d)
is normally distributed.

In the resulting HSMM, the probability to be in
state i at time step t given the partial observation
ζ1:t = {ζ1, ζ2, . . . , ζt}, namely αt,i , P(st = i | ζ1:t),
can be recursively computed with (see for example [Rabiner,
1989])

αt,i =

dmax∑
d=1

K∑
j=1

αt−d,j aj,i ND

d,i

t∏
s=t−d+1

Ns,i,

ht,i =
αt,i∑K

k=1 αt,k

,

(2)

where ND

d,i = N
(

log(d)| µD

i ,Σ
D

i

)
and (3)

Ns,i = N
(
ζs| µi,Σi

)
.

For t<dmax, the initialization is given by

α1,i = Πi ND

1,i N1,i,

α2,i = Πi ND

2,i

2∏
s=1

Ns,i +

K∑
j=1

α1,j aj,i ND

1,iN2,i,

α3,i = Πi ND

3,i

3∏
s=1

Ns,i +

2∑
d=1

K∑
j=1

α3−d,j aj,i ND

d,i

3∏
s=4−d

Ns,i,

etc., which corresponds to the update rule

αt,i = Πi ND

t,i

t∏
s=1

Ns,i +

t−1∑
d=1

K∑
j=1

αt−d,j aj,i ND

d,i

t∏
s=t−d+1

Ns,i.

(4)
Note that the above iterations can be reformulated for effi-

cient computation, see [Yu and Kobayashi, 2006; Yu, 2010].



2.1 Conditional estimation of duration probability

The explicit duration formulation of HSMM assumes that the
duration probability Pi(d) exclusively depends on how long
the system stays in state i. Yamagishi and Kobayashi, [2005]
noted that such assumption can have drawbacks in some ap-
plications such as in speech synthesis where various speaking
styles and/or emotions could influence the duration model.
In such case, it looks relevant to consider adaptive duration
probability. In [Yamagishi and Kobayashi, 2005; Nose et al.,
2007] the authors proposed to express the mean µD

i of the du-
ration probability Pi(d) as an affine function of a style vector,
whose parameters were estimated by a maximum likelihood
linear regression (MLLR) method [Leggetter and Woodland,
1995]. This approach also showed to improve human walking
motion synthesis [Yamazaki et al., 2005].

We propose an adaptive duration hidden semi-Markov
model (ADHSMM) in which the duration in every state
depends on an external input u. Unlike [Yamagishi and
Kobayashi, 2005; Nose et al., 2007], we express the dura-
tion probability as Pi(log(d) |u), obtained from a Gaussian
mixture model of KD components encoding the joint distri-
bution Pi(u, log(d)) for each state i of the HSMM. We thus
obtain a GMM for each state, with parameters

πDi,j , µi,j =

[
µU

i,j

µD
i,j

]
, Σi,j =

[
ΣU

i,j ΣUD

i,j

ΣDU

i,j ΣD
i,j

]
∀i ∈ {1, . . . ,K}, j ∈ {1, . . . ,KD}.

(5)

In contrast to [Yamagishi and Kobayashi, 2005; Nose et
al., 2007] that only consider an affine relationship between
µD
i and the input vector, our approach permits to encode more

complex nonlinear relationships between the duration of the
state and the external parameter.

We also propose to define a maximum duration dmax
i for

each state i that depends on the duration probability distri-
bution Pi(log(d) | u). Indeed, the maximum allowed dura-
tion dmax does not necessarily need to be the same for each
state i, see for example [Mitchell et al., 1995]. In the exper-
iments, we used dmax

i = exp
(
µD
i + 2 ΣD

i

1
2

)
, which means

that ∼ 95% of the observed duration for the state i lie within
two standard deviations.2

Therefore, we compute ND

d,i in (2) as
Pi(log(d) | ut) ∼ N (µ̂D

i,t, Σ̂
D
i,t) with

µ̂D

i,t =

KD∑
j=1

γi,j(ut) µ̃
D

i,j(ut), (6)

Σ̂D

i,t =

KD∑
j=1

γi,j(ut)
(
Σ̃D

i,j+µ̃D

i,j(ut)
(
µ̃D

i,j(ut)
)>)−µ̂D

i,t(µ̂
D

i,t)
>
,

(7)

2Note that the conditional duration probability is characterized
by a mean and a variance lying in the log-transformed space of the
duration data, therefore an exponential mapping is needed to define
the maximum duration as time steps.

where

µ̃D

i,j(ut) = µD

i,j + ΣDU

i,j ΣU

i,j
−1

(ut − µU

i,j), (8)

Σ̃D

i,j = ΣD

i,j −ΣDU

i,j ΣU

i,j
−1

ΣUD

i,j , (9)

γi,j(ut) =
πDi,jN (ut| µU

i,j ,Σ
U

i,j)∑KD

k πDi,kN (ut| µU

i,k,Σ
U

i,k)
. (10)

When it comes to human-robot collaboration, the proposed
formulation can be exploited for learning reactive and proac-
tive behaviors. On the one hand, ADHSMM encodes the
temporal patterns and sequential information observed dur-
ing the demonstration phase through its duration probabilities
and transition matrix. This feature allows the robot to behave
proactively by taking leading actions in case the user does not
follow the task plan as experienced in the training phase. On
the other hand, ADHSMM also permits the robot to shape
the task dynamics by modifying the states duration accord-
ing to the interaction with the human, and therefore react to
the user’s actions. These two types of behaviors are driven
by the forward variable αt in (2), which determines the influ-
ence of the ADHSMM states at each time step t considering
the partial observation ζ1:t, the transition matrix ai,j , and the
duration model Pi(log(d) |ut) that takes into account the in-
teraction with the user. The forward variable will next be used
to generate trajectory distributions to control the robot during
the collaborative task.

2.2 Trajectory retrieval using dynamic features
In the field of speech processing, it is common to exploit
both static and dynamic features to reproduce smooth tra-
jectories from HMMs [Furui, 1986; Tokuda et al., 1995;
Zen et al., 2007a]. This is achieved by encoding the distri-
butions of both static and dynamic features (the dynamic fea-
tures are often called delta coefficients). In speech process-
ing, these parameters usually correspond to the evolution of
mel-frequency cepstral coefficients characterizing the power
spectrum of a sound, but the same approach can be used with
any form of continuous signals. In robotics, this approach has
rarely been exploited, at the exception of the work from [Sug-
iura et al., 2011] employing it to represent object manipula-
tion movements. We take advantage of this formulation for
retrieving a reference trajectory with associated covariance
that will govern the robot motions according to the behavior
determined by the ADHSMM.

For the encoding of robot movements, velocity and accel-
eration can alternatively be used as dynamic features. By con-
sidering an Euler approximation, they are computed as

ẋt =
xt+1 − xt

∆t
, ẍt =

ẋt+1 − ẋt

∆t
=
xt+2 − 2xt+1 + xt

∆t2
,

(11)
where xt is a multivariate position vector.

By using (11), the observation vector ζt will be used to
represent the concatenated position, velocity and acceleration
vectors at time step t, namely

ζt =

[
xt

ẋt

ẍt

]
=

 I 0 0
− 1

∆tI
1

∆tI 0
1

∆t2 I − 2
∆t2 I

1
∆t2 I

[ xt

xt+1

xt+2

]
. (12)



ζ and x are then defined as large vectors concatenating ζt
and xt for all time steps, namely ζ =

[
ζ>1 ζ

>
2 . . . ζ

>
T

]>
, x =

[x>
1 x

>
2 . . . x

>
T ]

>.
Similarly to the matrix operator (12) defined for a single

time step, a large sparse matrix Φ can be defined so that
ζ = Φx, namely3

ζ︷ ︸︸ ︷

...
xt

ẋt

ẍt

xt+1

ẋt+1

ẍt+1

...


=

Φ︷ ︸︸ ︷

. . .
...

...
... . .

.

· · · I 0 0 · · ·
· · · − 1

∆tI
1

∆tI 0 · · ·
· · · 1

∆t2 I −
2

∆t2 I
1

∆t2 I · · ·
· · · I 0 0 · · ·
· · · − 1

∆tI
1

∆tI 0 · · ·
· · · 1

∆t2 I − 2
∆t2 I

1
∆t2 I · · ·

. .
. ...

...
...

. . .



x︷ ︸︸ ︷

...
xt

xt+1

xt+2

xt+3

...


.

(13)
During the demonstration phase of a collaborative task,

the collected dataset {ζt}Nt=1 with N =
∑M

m Tm is com-
posed of M trajectory samples, where the m-th trajectory
sample has Tm datapoints. This dataset is encoded by an
ADHSMM, which can also provide a given sequence of states
s = {s1, s2, . . . , sT } of T time steps, with discrete states
st ∈ {1, . . . ,K}. So, the likelihood of a movement ζ is

P(ζ|s) =

T∏
t=1

N (ζt|µst ,Σst), (14)

where µst and Σst are the center and covariance of state st
at time step t. This product can be rewritten as

P(ζ|s) = N (ζ|µs,Σs), (15)

with µs=


µs1
µs2
...
µsT

 and Σs=


Σs1 0 · · · 0
0 Σs2 · · · 0
...

...
. . .

...
0 0 · · · ΣsT

 .
By using the relation ζ = Φx, we then seek during repro-

duction for a trajectory x maximizing (15), namely

x̂ = arg max
x

logP(Φx | s). (16)

The part of logP(Φx | s) dependent on x takes the form
c = (µs−ζ)>Σ−1

s (µs−ζ) = (µs −Φx)>Σ−1
s (µs −Φx).

A solution can be found by differentiating the above objective
function with respect to x and equating to 0, providing the
trajectory (in vector form)

x̂ =
(
Φ>Σs

−1Φ
)−1

Φ>Σs
−1µs, (17)

with the covariance error of the weighted least squares esti-
mate given by

Σ̂
x

= σ
(
Φ>Σs

−1Φ
)−1

, (18)

where σ is a scale factor.4

3Note that a similar operator is defined to handle border condi-

Figure 2: Experimental setting of the handover and trans-
portation task. The teacher on the left demonstrates the skill
to the robot, while the person on the right is the collabora-
tor. After learning, the robot reproduces the collaborative be-
havior as demonstrated by the teacher. Top: First phase of
the demonstration in which the robot reaches for an object (a
screwdriver in this setup) that is delivered by the user. The
hand position is tracked using optical markers. Bottom: Sec-
ond phase of the demonstration showing the transportation of
the object towards its final location (black area).

2.3 Optimal Controller for HRC
The resulting GaussianN (x̂, Σ̂

x
) forms a trajectory distribu-

tion that will be used to control the robot motion during the
collaborative task. Specifically, once a reference trajectory
x̂ has been obtained, the optimal controller for human-robot
collaborative tasks proposed in [Rozo et al., 2015] is used
to track this reference. Such an optimal feedback controller
allows the robot to plan a feedback control law tracking the
desired state within a minimal intervention control principle.
Formally, the problem is stated as finding the optimal input ν
that minimizes the cost function

Jt =

∞∑
n=t

(xn − x̂t)
>Qt(xn − x̂t) + ν>

nRt νn, (19)

where the matricesQt andRt are weighting matrices that de-
termine the proportion in which the tracking errors and con-
trol inputs affect the minimization problem. Here, we take
advantage of the variability observed during the demonstra-
tions to adapt the error costs in (19) in an online manner by

defining Qt =
(
Σ̂
x

t

)−1

, and by setting Rt in accordance
to the application and motors used in the experiment (set as
constant diagonal matrix in the experiments reported in this
paper).

3 Handover and Transportation Task
In order to show how the proposed approach can be exploited
in HRC scenarios, we consider a collaborative task in which

tions, and that Φ can automatically be constructed through the use
of Kronecker products.

4Equations (17) and (18) describe a trajectory distribution, and
can be computed efficiently with Cholesky and/or QR decomposi-
tions by exploiting the positive definite symmetric band structure of
the matrices.
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Figure 3: Model, demonstrations and reproductions of the handover task in the reactive behavior scenario. (a) Task-space view
of the model, robot end-effector and human hand trajectories depicted in gray and green solid lines, respectively. (b) Evolution
in time of the demonstrations. (c) Reproductions of the skill. Darker lines display slower human hand motion.

Figure 4: Evolution in time of the rescaled forward variable ht,i during the handover task. The temporal dynamics of the task
is autonomously adapted according to the interaction with the user.

the robot role is to first reach for an object that is delivered
by the user, and then transport it along a given path to attain a
final location. The first part of the task should thus be condi-
tioned by the human motion, namely, the state durations for
this phase of the task should vary according to the user hand
position measured when he/she is bringing the object to the
location where the robot will grab it. The second part of the
task occurs when the robot takes the object and transports it
towards the final location. Here, the robot motion is expected
to be independent from the human motion.

A Barrett WAM robot is used in this experiment. In the
demonstration phase, the gravity-compensated robot is kines-
thetically guided by the teacher while cooperatively achiev-
ing the task with a person, as shown in Figure 2. A human
teacher first shows the robot how to approach the object lo-
cation based on the user motion, and how to transport the
object to the final location. The collaborator’s hand position
is tracked with a marker-based NaturalPoint OptiTrack mo-
tion capture system, composed of 12 cameras working at a
rate of 30 fps. The position of the robot is defined by Carte-
sian position x, while the external input u, conditioning state
duration, corresponds to the human hand position xH .

During the demonstration phase, the first part of the task
was demonstrated by showing three different human mo-
tion velocities labeled as low, medium and fast. We col-
lected four demonstrations for each velocity level, totaling
twelve demonstrations, and afterwards trained a model of
nine components (K = 9, selected empirically), under the
assumption of a left-right topology. Each datapoint consists

of the robot position xt and velocity ẋt at each time step
t of the demonstration, therefore the observation vector is
defined as ζt = [x>

t , ẋ
>
t ]> in this experiment. We model

the state duration using a GMM with KD = 2 (selected
empirically), trained by using the dataset {ξi,m}

Mi
m=1 with

ξi,m = [u>
m, log(di,m)]>, where um corresponds to the hand

position xH recorded while the system is in state i, log(di,m)
is the log-transformed duration given by the number of con-
secutive time steps that the system stays in state i, and Mi is
the number of datapoints in the demonstration sequences in
which state i was visited.

3.1 Results
Reactive behaviors
Figure 3 shows the model, demonstrations and reproductions
of the collaborative task when the robot is acting in a reac-
tive manner to the human input. In Figure 3a, we show a
3D view of the model in the workspace of the robot, as well
as the human input during the demonstrations. The model
successfully encodes the local correlations between the task
space variables. Figure 3b depicts the demonstrations pro-
vided to the robot through kinesthetic teaching, with lighter
lines corresponding to a faster approach towards the human
hand before the handover occurs. In Figure 3c we show the
skill reproductions for two different hand velocities. We can
see that the movement is correctly regenerated in both situa-
tions. Finally, Figure 4 shows the forward variable in the two
cases that we considered during the reproductions. Firstly, we
see that the sequence of states is correctly generated in both



u
1

0 100 200 300 400
0.5

1

1.5

x
1

0 100 200 300 400
0

0.5

1

Figure 5: Evolution in time of the proactive behavior variables. Top: First dimension of the user hand position. The hand does
not move during the period marked by the shaded area. Middle: Dimension x1 of the robot end-effector position in task space.
The state transition (shaded areas) marks the start of the proactive behavior. Bottom: Rescaled forward variable ht,i.

scenarios, matching what one would expect to be an accurate
task space trajectory of the end-effector for the considered
skill. Note that this was achieved by taking advantage of the
probabilistic modeling of temporal variability employed by
ADHSMM, through state transition and state duration prob-
abilities. Secondly, we observe that the duration of the first
three states is strongly correlated to the human hand motion
since the duration shortens when the hand moves faster (first
row), resulting in a faster approach of the end-effector to the
human hand. The influence of the hand movement in the re-
maining states is negligible, as expected.

Proactive behaviors
In addition to human-adaptive reactive behaviors, the pro-
posed approach can also be used to generate proactive behav-
iors that remain consistent with the expected temporal evo-
lution of the task. To showcase this property, we portray a
scenario where the human stops moving while reaching the
object (Figure 5, top). This illustrates a situation in which
a new person would be interacting with the robot and would
not know enough about the task to lead the cooperation. Con-
sequently, the behavior that one would like to observe in the
robot would be that it provides clues about how previous users
proceeded in similar situations. In the proposed approach, the
robot will take the initiative to proceed with the movement af-
ter some time (in case this duration lasts unexpectedly longer
than in past experiences), and will guide the user toward the
next step of the task (Figure 5, middle). This occurs at most
when the duration of state 1 exceeds its maximum value dmax

1
and the model transits to state 2 (Figure 5, bottom). This
mechanism can be exploited to let the robot help new users
proceed with their roles in the collaboration by showing its in-
tent in the cooperation, i.e., showing the way in which the task
is believed to be continued (see Figure 5, before t = 100).5
A video showing the results of this experiment is available at
http://programming-by-demonstration.org/IJCAI-IML2016/

This mechanism currently has some limitations. In the ex-
ample, the robot had to stop only once before the user could
understand what to do. If the user had not understood that

5In this experiment, a time step approximately lasts 0.04 seconds.

his/her role was to hand the object to the robot, the coopera-
tion would have failed because the robot would have finished
the task without having the object in its hand. A possible way
to increase the number of clues that the robot provides to the
human before continuing the task on its own could be to add
more states to the model to let the user better understand the
intent of the movement. This would make the robot reach
the handover pose in approximately the same time, but with
a greater number of state transitions, i.e., discrete movements
towards the target, providing the user with more information
about the movement. Similarly, additional sensory informa-
tion could be used to verify that a valid situation occurs before
moving on to the next part of the task.

4 Conclusions and Future Work
This paper introduced an approach allowing collaborative
robots to learn reactive and proactive behaviors from human
demonstrations of a collaborative task. We showed that re-
active behaviors could include the modulation of the tempo-
ral evolution of the task according to the interaction with the
user, while proactive behaviors could be achieved by exploit-
ing the temporal patterns observed during the learning phase.
These collaborative behaviors can be exploited to extend the
robot capability to assisting tasks in which both interaction
and temporal aspects are relevant. Indeed, the probabilistic
nature of the proposed ADHSMM allows the robot to react to
different human dynamics, which is beneficial for collaborat-
ing with distinct partners. The proposed proactive behavior
allows the robot to take the lead of a task when it is appro-
priate (namely, according to the task dynamics previously ex-
perienced in the demonstrations), which can be exploited to
communicate its intention to the user. The approach is also
compatible with task-parameterized movement enconding, in
which states are modulated by external parameters, reducing
the need for learning new trajectories [Silvério et al., 2015].
We plan to extend the proposed learning model to situations
in which the transitions between the model states also depend
on the interaction with the partner, which will allow the robot
to learn more complex collaborative tasks.
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