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Abstract

In order for robots to successfully carry out manipulation tasks, they require to exploit contact forces and variable impedance
control. The conditions of such type of robotic tasks may significantly vary in dynamic environments, which demand robots to
be endowed with adaptation capabilities. This can be achieved through learning methods that allow the robot not only to model
a manipulation task but also to adapt to unseen situations. In this context, this paper proposes a learning-from-demonstration
framework that integrates force sensing and variable impedance control to learn force-based variable stiffness skills. The proposed
approach estimates full stiffness matrices from human demonstrations, which are then used along with the sensed forces to encode
a probabilistic model of the task. This model is used to retrieve a time-varying stiffness profile that allows the robot to satisfactorily
react to new task conditions. The proposed framework evaluates two different stiffness representations: Cholesky decomposition
and a Riemannian manifold approach. We validate the proposed framework in simulation using 2D and 7D systems and a couple

of real scenarios.
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1. Introduction

Day by day robotic applications are bringing robots into un-
structured environments (e.g., houses, hospitals, museums, etc.)
where they are expected to perform complex manipulation tasks
that are hard to program. This difficulty arises mainly be-
cause unstructured environments are dynamic, uncertain, and
possibly inhabited by humans, therefore making hard-coding
an unfeasible approach. Moreover, as manipulation tasks re-
quire contact with the environment (and possible humans), it
is imperative to use complaint motions, which further increase
the complexity of programming. In this context, human exper-
tise can be alternatively exploited in a robot learning approach,
where the robot learns, from human examples, to reproduce
force-based manipulation tasks that require variable impedance.

In this vein, Learning from Demonstration (LfD) [1] is a
user-friendly and intuitive methodology for non-roboticists to
teach a new task to a robot. In this case, task-relevant informa-
tion is extracted from several demonstrations. Standard LfD ap-
proaches have focused on trajectory-following tasks, however,
recent developments have extended robot learning capabilities
to the force and impedance domains [2} [3]].

In this paper, we propose to exploit LfD to learn manipula-
tion tasks that demand to use different stiffness levels according
to the state of the environment and the task itself, which are sub-
stantially related to the robot force-based perceptions. Specifi-
cally, the proposed learning framework implements kinesthetic
teaching (Fig. [THef?) to collect demonstrations of a manipula-
tion task, where both kinematic and dynamic data are recorded.
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Figure 1: Left: a human operator teaches a robot how to perform a valve-turning
task. Right: a snapshot showing the valve-turning task reproduced by a KUKA
LWR robot.

The demonstrations along with a virtual model of a spring-
damper system are used to obtain time-varying stiffness esti-
mates (Section[3.1). These are computed as the closest symmet-
ric positive semi-definite stiffness matrix of a least-squares es-
timation (Section[3.3). Such estimates are subsequently used as
the desired stiffness for corresponding force patterns observed
during the demonstration phase. Both sensed forces and es-
timated stiffnesses are then probabilistically encoded using a
Gaussian mixture model (GMM), which is exploited during re-
production phase to retrieve variable stiffness profiles by Gaus-
sian mixture regression (GMR) (see Sections [4] and [3] for de-
tailsﬂ In summary, the main contributions of our LfD frame-
work are:

— Exploitation of force sensing and variable impedance con-
trol to learn and reproduce manipulation tasks requiring

'We refer to variable impedance learning as the process of estimating and
reproducing variable stiffness profiles. Nevertheless, the proposed approach
can also be used to learn variable damping controllers.

August 27, 2018



different stiffness levels.

— Extensive analysis and comparison of different stiffness
estimation techniques and probabilistic learning methods
for encoding and retrieval of full stiffness matrices.

We validate our framework by first using the model of a 2D
spring-damper system subjected to an external force, and a sim-
ulation to estimate inertia matrices for a 7 DoFs manipulator.
Finally, a lifting and a valve-turning task are used as real sce-
narios to further evaluate the performance of the proposed ap-
proach, as shown in Section@ Discussions of results and con-
clusions and future research are given in Sections [7]and 8]

2. Related Work

Traditionally, robot learning has been concerned about tra-
jectory following tasks [4]. However, the new generation of
torque-controlled robots has made it possible to extend learning
capabilities to tasks that require variable impedance skills [3].
Impedance control can be used to achieve complaint motions,
in which the controller resembles a virtual spring-damper sys-
tem between the environment and robot end-effector [S)]. This
approach allows robots to interact with the environment or hu-
mans more safely and in an energy-efficient way.

Previous works have been devoted to understand how
impedance is modulated when humans interact with the envi-
ronment [6]] or to transfer human’s impedance-based skills to
robots [[7]. However, robot learning capabilities were not devel-
oped in order to automatically vary impedance controller pa-
rameters to satisfactorily adapt in face of unseen situations.

Robot learning approaches have recently gained great in-
terest for modeling variable impedance skills. Peternel et al.
[I8] proposed a single muscle impedance control interface for
a compliance learning framework. Such an approach required
prior knowledge on human anatomy and long calibration time.
The authors extended their work by introducing a 3 degrees of
freedom (DoF) force feedback at the operator’s end-effector [9]].
In contrast to Peternel et al. works, where authors used human
impedance for learning, our approach estimates the robot stift-
ness from the task dynamics observed across multiple demon-
strations.

Variable impedance also plays an important role in human-
robot collaboration. One of the earliest works was introduced
by Ikeura and Inooka [[10]] to show the advantages of variable
damping control schemes for a master-slave system to perform
lifting tasks, which was then extended by introducing variable
stiffness [11]. Tsumugiwa et al. [12] introduced a variable
impedance control based on the human arm stiffness estima-
tion. They varied the virtual damping coefficient of the robot as
a function of the estimated stiffness of the end-point of the hu-
man arm, and differential changes in position and force. Rozo et
al. [13] proposed a framework to learn stiffness in a collabora-
tive assembly task based on visual and haptic information. The
estimated stiffness relied on a task-parameterized GMM, where
each Gaussian component was assigned an independent stift-
ness matrix. The estimations were obtained via weighted least-
squares (WLS) and the Frobenius norm. Recently, the authors

reformulated their stiffness estimation method as a convex op-
timization problem, so that optimal stiffness matrices are guar-
anteed [3]. Unlike our approach, Rozo et al. used time-driven
attractor trajectories, which demanded to manually specify an
initial stiffness to compute the attractor dynamics. Instead, our
work focuses on force-driven skills learned by a probabilistic
model that directly encodes full stiffness matrices estimated
from the task dynamics, without requiring an initial approxi-
mation of the robot stiffness.

Manipulation tasks involve contact with the environment,
where force sensing plays a crucial role for successful robot
performance. In this context, force-based skills have been re-
cently addressed from a robot learning perspective in [13] [14]
150 [16]]. Such techniques were applied to tasks such as iron-
ing [15]], assembling furniture [13], and pouring [14]. Kormu-
shev et al. [[15] encoded position and force data into a time-
driven GMM to later retrieve a set of attractors in Cartesian
space through least-squares regression. Stiffness matrices were
estimated using the residuals terms of the regression process.
Kronander et al. [14]] used kinesthetic demonstrations to teach
haptic-based stiffness variations to a robot. They estimated full
stiffness matrices for given positions using GMR, which used a
GMM that encoded robot Cartesian positions and the Cholesky
vector of the stiffness matrix. Li ef al. [16] omitted the damp-
ing term from the interaction model and used GMM to encode
the pose of the end-effector. Then they found the impedance
parameters and reference trajectory using optimization tech-
niques. Unlike previous approaches, our approach learns full
stiffness matrices that rely not only on the task dynamics but
also on sensed interaction forces.

Rey et al. [17] used Path Integrals (PI?) policy search for
time-invariant policies to learn variable stiffness and motion
simultaneously. Their work was built on [18] where PI? was
used with dynamic movement primitives to learn stiffness ma-
trices through a set of basis functions that linearly depended
on a time-driven policy parameter optimized by PI>. Rey et al.
regressed the policy parameters via GMR, which allowed for
state-dependent policies. However, iterative learning methods
can be time consuming in some applications and impractical in
others. Therefore, we focus our work on a learning approach
where a model of the task is learned from human examples,
which may also be combined with the aforementioned iterative
approaches if safe exploration strategies are considered. More-
over, in contrast to our approach, the foregoing work estimated
a diagonal stiffness matrix profile and did not exploit force-
based perceptions to reproduce the task.

3. Proposed Approach

A successful LfD should include both a learning framework
that encodes the raw data as well as an appropriate model that
encapsulates the dynamics of the desired behavior. With this
in mind, we exploit a linear dynamical model to estimate lo-
cal full stiffness matrices, which are then encoded along with
force data by a probabilistic model. More specifically, during
the demonstration of the task, we record the robot end-effector
position X, velocity X, and acceleration X, and the associated



Table 1: Phases of the proposed approach

1. Task demonstrations
- Performing N X k recordings for a task. k
demonstrations in N different situations.
2. Stiffness estimation

. =P . .
- Estimate K at each datapoint using (3)

and (@) (see Section ,

- Compose dataset by concatenating {f; K’

N
tn> l,n}
for learning (see Section [3.3).

n=1

- Set the input 7 and output O elements.
for t < 1 to T (for each reproduction time step)
- Giving an input 7, estimate the output O
O using (7) or (19).
- Compute force command F at the robot
end-effector using the resultant K"
under the unitary-mass assumption
- Compute desired joint torques using (26))
end

sensed Cartesian forces f° with respect to the robot frame. Us-
ing the collected data, we first estimate the stiffness required to
locally fit the observed dynamics to a virtual spring-damper sys-
tem as explained next. After, a GMM is trained to encode both
force and stiffness data. The model is later used by GMR to
retrieve continuous and smooth stiffness profiles given unseen
force trajectories during the reproduction of the task. Table
summarizes our approach.

3.1. Interaction Model

In tasks that require physical interaction between a robot and
its surroundings, it is highly recommended to use impedance
control, which specifies a dynamic relationship between posi-
tion and force. Using impedance control helps overcome posi-
tion uncertainties and subsequently avoid large impact forces,
since robots are controlled to modulate their motion or compli-
ance according to force perceptions. In this work, we model the
robot end-effector as an unitary-mass 1, affected by two forces:
control input f¢ and external/sensed forces f¢, which leads to the
simple dynamic model [[19]

Ik = £ + . (1

The dynamics governing the robot behavior are modeled as a
virtual spring-damper system as follows

Ik, =K'k -x,) - K%, +f¢, 2)

where K and K" are full stiffness and damping matrices while
X represents the equilibrium position (or desired trajectory) of
the virtual system.

3.2. Stiffness Estimation from Demonstrations
The full stiffness matrix K” can be estimated from demon-
strations using different approaches. For example, GMM is

used in [3] to cluster the demonstrated data, and then WLS was
applied to estimate a K?D associated with each Gaussian com-
ponent i using convex optimization. Each Kip was constrained
to fulfill a local dynamics extracted from human demonstra-
tions. This approach required several iterations for conver-
gence, which increases the computational cost of the estima-
tion process. Calinon ez al. [20] estimated K?” from the inverse
of the observed position covariance encapsulated in a GMM.
Their approach is limited to tasks displaying variability in posi-
tion trajectories across demonstrations, which does not arise in
scenarios where the end-effector is constrained to follow a sin-
gle Cartesian path (e.g., valve-turning tasks). Unlike [3}, [20],
we propose to use a sliding window technique to carry out
local stiffness estimations that fulfill (2)) at each time step z.
This method is only parametrized by the window length L, see
Fig.[3| Note that the use of clustering techniques such as GMM
may demand to use a high number of Gaussian components
for highly-nonlinear dynamic tasks, significantly increasing the
number of parameters for the estimation process.

Specifically, in our estimation method, a window of length
L moves along the demonstration data x, X, X, and f¢, and the
full stiffness matrix estimate is computed over the data cov-
ered by the window for each time step ¢. Formally, from (2),
let us define {X = X — x}, and {§ = I,X + K"Vx — ¢}, for all the
datapoints in the window, for all demonstrations. Afterwards,
by concatenating the resulting data, matrices X = X;||X]| . . . ||Xx
and Y = §,[|¥ll...1l¥, are defined (Fig. E]) The stiffness ma-
trix estimation is carried out at each ¢ by solving the following
linear system using least-squares,

XK” =Y. ©)

However, a stiffness matrix K € 8" is symmetric and posi-
tive definite (SPD), which means that the estimation computed
by (@) is just a rough approximation that does not fulfill SPD
constraints. Inspired by [13]], we resort to the approximation
formulated in [21] to compute the nearest-SPD matrix from the
approximation computed in (3)), as follows,

N B+H
" =222 @)
2
K” + (KP)'
B:%), H=VSV',

where H is the symmetric polar factor of B = USV'

Note that, some of the approximated matrices might be on
the boundary of the SPD matrices space, resulting in symmet-
ric positive semi-definite matrices. In this case, each eigen-
value A; ~ 0 of K’ is constrained to have a minimum value
€, and then K” is reconstructed using its eigendecomposition
K” = QAQ™". The damping term in () can be chosen either
experimentally or using the eigendecomposition of K” to keep
the system critically damped, e.g. K = Q(£ AQ", where Q
and A are respectively the eigenvectors and eigenvalues of KP,
and £ € R* is a tuning parameter.
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Figure 2: Diagram of the proposed framework for force-based variable impedance learning. Learning: The interaction model is used to estimate a stiffness profile
from the collected demonstrations. The sensed forces along with the estimated stiffness matrices are used to train a GMM. Reproduction: A GMM is generated and
later used for retrieving a new stiffness profile by applying GMR, which then will be used through the interaction model to execute the task in new situations.
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Figure 3: Sliding window approach. A rectangular window with a fixed width
L slides across the data over time. For each of these windows, K” is estimated
using (3). The arrow indicates the sliding direction.

3.3. Stiffness Learning

Some manipulation tasks heavily depend on force percep-
tions, which play a relevant role when vision information is un-
available or uninformative. Therefore, we propose an approach
that learns and reproduces variable impedance skills based on
interaction forces. In this paper, given the estimated stiffness
matrices K~ along with sensed forces f¢, we implement the fol-
lowing two methods to learn force-based variable impedance
skills:

1- Learn K~ using GMM/GMR for Euclidean data. Here,
we represent K’ by its Cholesky vector v obtained
from the vectorization of the upper triangle factor X% in
=P T . . .

K™ = %" K”. Using this representation we reduce the
data space dimensionality to m + m(m — 1)/2 instead of

. . =P . . .
vectorizing the whole matrix K", which replicates stiff-
ness information due to its symmetry.

2— Use a tensor-based formulation of GMM/GMR on the Rie-
mannian manifold S to directly learn and reproduce K’
[22]], which avoids the reparametrization of the above ap-
proach and exploits the geometry of the SPD space.

In the proposed framework, we exploit (3) and (@) to esti-
mate the desired time-varying stiffness K" using the recorded

data {x, x, X, f} of a subset of k demonstrations given under the
same task situation T}, with n = 1,..., N, and where N repre-
sents the number of different task instances. Each task situation
T, is characterized by different task conditions, which basically
affect the task dynamics and interaction forces. Therefore, for
N different situations, N different time-varying stiffness pro-
files are estimated, leading to the training dataset {f'f,n, Kfn},’:’zl,
where f; = 1/k (ZL] ffs) is the mean sensed force across the
subset of k demonstrations at each ¢. Figure. [2| shows an illus-
trative diagram of the proposed framework.

4. GMM/GMR on Cholesky Factor

Recall from Section the stiffness matrix K” € S, and
it can therefore be decomposed using Cholesky decomposition.
For generic representation, let us denote A as any arbitrary SPD
matrix and L its Cholesky factor, so that A = LTL. This repre-
sentation is here exploited to learn a joint probability distribu-
tion of the vectorization of the upper triangle matrix L and other
data vector(s). Also, let us define the input vector & and output
vector £9, which form a demonstration datapoint £, = {££, £9).

The training dataset {{£,} = { ;f ,{-‘g } f;’:l is assumed to be
normally distributed and modeled by a mixture of G Gaussians

G
Plér.£7) = IZ] aN(€,: 0. Z0). 5)

where @ = {7}, y;, El}le are the prior, mean, and covariance pa-
rameters. The superindexes 7 and O respectively indicate input
and output dimensions. Maximum-likelihood estimation of the
mixture parameters is iteratively performed using the standard
Expectation-Maximization (EM) algorithm [23]].

In literature, GMM is usually combined with GMR, provid-
ing an elegant solution for encoding and synthesizing motor
skills in robotics [24]. GMR is used here to retrieve the vector-
ized versions of L., which are subsequently used to reconstruct



a desired SPD matrix A. Formally, let us decompose the GMM
parameters y; and X; as

T T IO
_|H _|1E X
ﬂz—[o], 21—[01 o |- (6)
H L L

During the reproduction of the task, the conditional distribu-
tion P(f(,f | 5 ) is estimated as follows,

P (621€T) = N(¢2%: 0. £7), ™

where

G
a9 = mEHED), ®)
=1
A -1
PPED = 1)+ E X € - ),
G
2,0 20 N T ~O~OT
£, = > mEDNE + 1 €Dl €D ) - %, ©)
=1
ﬁo — EO _ EOIZI 712[0
1 t,l 1l =t tl

The upper triangle matrix L. of the Cholesky decomposition
is reconstructed from the mean f1° and so the desired SPD ma-

. A aTe
trix becomes A = LL L.

5. GMM/GMR on SPD Manifolds

Recall that K” € S, therefore, a geometry-aware approach
that allows us to encode and retrieve SPD matrices is an im-
portant tool to learn variable impedance skills. In this context,
the model introduced in [22} 25]] deals with the geometry of the
SPD manifold and allows us to build joint and conditional prob-
ability distributions over it. This model is mainly built on the
incorporation of a Riemannian metric, which allows the set of
SPD matrices to form a Riemannian manifold [26]. Such metric
defines the geodesics (a generalization of straight lines in Eu-
clidean space), which is the minimum length curves between
two points on the manifold.

5.1. Riemannian Manifold of SPD matrices

A Riemannian manifold M is a topological space in which
each point locally resembles a Euclidean space. For each point
p € M, there exists a tangent space 7, M (endowed with a pos-
itive definite inner product), which corresponds to the space of
symmetric matrices for the case of the SPD manifold. Note
that the space of d X d SPD matrices can be represented as the
interior of a convex cone embedded in its tangent space Sﬁ{.
To switch between 7, M and M, which is needed to compute
statistics over Riemannian manifolds, three operations are re-
quired: exponential and logarithm maps, and the parallel trans-
port.

The exponential map Expp(A): 7t M — M is a function that
maps a point A in the tangent space to a point Q € M, so that it
lies on the geodesic starting from I' € 87 in the direction of A.
On the other hand, the logarithm map Logp(Q): M — TrM is

the inverse of the exponential map. The aforementioned map-
pings are computed as [22]

Expp(A) = I'? exp(T AT )2, (10)
Logr(Q) = 't log(T QI *)I'2. (11

Moreover, in order to move elements between tangent spaces
while maintaining the angle between them constant, we need
to use parallel transport Br.q : 7t M = ToM. This is com-
puted for a matrix V as Brq(V) = Crsq T CIT‘HQ, where

Croq = ' exp(AT"2 VI $)I" 7 (see [22] for details).

5.2. GMM on SPD

In general terms, for a given random variable & € TyM, a
GMM on the SPD manifold is defined by

G
PE) = ) mNwEM,Y), (12)
=1

where G is the number of Gaussian components, M € M is the
mean (and in turn, the origin in the tangent space 7y1), and
Y € TyM is the 4"—order covariance tensor. The GMM pa-
rameters @ = {m;, M, E,}IG:1 on the manifold are estimated us-
ing EM algorithm as follows,

E-step:
=M
PUE) = GHINM( ik ) ’ (13)
Zj:] TNMESM;, Y )
N
N = PUE). (14)
i=1
M-step:
1 N
M, « —Ex ( P(IZ,)Lo s,.), 15
N pM,;<|>gM,<> (15)

1 N
Y < N, Z PUIE)Logy, (8:) ® Logy (E),  (16)
i=1

N,
N

T —

a7

5.3. GMR on SPD

During the reproduction, the conditional distribution
P(EoolErr) is computed via GMR. Formally, by defining in-
puts E77 and outputs Epp, a block decomposition of =, M, and
Y is given as follows,

_ _[Ezx O M;r O
- = — N M = s
| 0 500] [ 0 Moo]
B ) (18)
|0 y®| 0 0
17 >
O
o 0| o0 Y9

where the 4" —order tensor Y is represented by separating the
different fibers with bars. With this decomposition, manifold



functions can be applied individually on input and output parts,
e.g.

= _ EXpM (EI[) 0
Expy (%) = [ 0 EXPMOO(EOO)].

GMR on an SPD manifold approximates the conditional dis-
tribution by a single Gaussian

- = ~ ~ 00
P(Eo0lZrr) ~ N (Moo, Ho). (19)
where My is calculated iteratively until convergence with

~I7 ~I17!
"= LOgMOO(MOO,l) - y()(),ly]],l LOgEH(MII,I)» (20)

Moo — ExpMOO( Z h,T,), 1)
1

where
NErr:Mrr, Y77)
TN = ML I

G = . i7
2 mNErrMrr ;. Y77

hy = (22)
describe the responsibilities of the GMM state [ in the regres-

. . ~ 00 . .
sion. The 4-order tensor covariance Y, is calculated in the
tangent space of the estimated mean as

+,00 ~ 00 ~ 77 ~ I ~00
Yoo = Z hl(y 001~ Yoo, Yrri Y+ 1i® Tz), (23)
1

_ ) & _|Br O
where Y = BMHE(y) and & = [ 0 MOO]‘

6. Experiments

Our framework was evaluated in both simulations and a cou-
ple of real scenarios. The approaches have been implemented
in MATLAB® for simulation, and in object oriented C++ for
real experiments. We used a computer running Ubuntu 16.04
LTS with Intel Core i7 — 6700 CPU 3.40 GHz, 16 GB of RAM.

6.1. Simulation

Three different experiments were carried out to evaluate the
proposed framework and to clearly explain its different phases.
The simulated tests consisted of:

1- Comparison between the SPD approximation @) and con-
vex optimization proposed in [3]] to estimate K.

2— Stiffness estimation, learning and reproduction with a 2-
DoF spring-damper system (MSD).

3— Comparison of the probabilistic encoding and retrieval
using Cholesky decomposition and SPD manifold ap-
proaches in high dimensional spaces.

x1073

I Convex opt.
[ NearestSPD approx.

[\

dist. error

Log Euclidean Affine invariant Log Determinant

Figure 4: Comparison between the stiffness profile estimated by nearestSPD
approximation (@) and the ones estimated by convex optimization (Z4) using
different SPD matrix distances.
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Figure 5: Compare the ground truth stiffness ellipsoids (yellow) of the MSD
with the estimated ones using nearestSPD approximation (blue) and convex
optimization (orange). Top: stiffness ellipsoids of the ground truth at different
time steps matching the nearestSPD and convex optimization estimations at
the same time steps. Bottom: 2D plot showing the hand-coded rotation of the
stiffness ellipsoids.

For the first two simulated experiments, manually-designed
external force profiles f* were used to compute the MSD dy-
namics [x,X,X] at each time step ¢ for specific stiffness and
damping values. This stiffness is considered as our ground
truth for comparison purposes. Different springs were distin-
guished by their stiffness values. For each spring, the stiffness
estimation K” was obtained from five demonstrations (differing
in the applied external forces) using a window length L = 3 and
damping coeflicient K?’ = diag(50) [N.s/m]El

6.1.1. Stiffness estimation
In this section, a comparison between two methods for esti-
mating SPD matrices from a least-squares method is presented
and analyzed. As described in Section K” can be estimated
using (3) and @), or alternatively formulating the estimation
problem as a convex optimization [3]. In the latter approach,
the objective is to minimize the Euclidean norm of the residu-
als, subject to the matrix inequality constraint introduced by the
positive semi-definiteness of K*:
minimize| XK” — Y||,, subjectto K* >0.  (24)

Figures [4] and [5] show a comparison between the ground
truth stiffness matrices and the estimations obtained from the

ZParameters such as window length L, number of Gaussian components G,
small eigenvalue €, and number of demonstrations were experimentally chosen.
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Figure 6: Learning the demonstrated stiffness profile for MSD using GMM on S”. (a): shows the Cartesian trajectory of the MSD, starting from rest at point (5,0),
and the stiffness ellipsoids at different time steps for all demonstrations. (b): shows two demonstrations separately out of five for better illustration. (c): shows the
demonstrated stiffness ellipsoids over time (fop in color, bottom in gray) and the centers M; of the 4-state GMM (bottom).

nearest-SPD approximation (@) and convex optimization (24).
In this comparison we used ten MSD systems of different time-
varying stiffness. During the evolution of the MSD dynamics in
the demonstration phase, the stiffness ellipsoids were initialized
from an horizontally-aligned ellipsoid, which was then contin-
uously rotated clockwise through RTK”R until reaching a 45
degrees rotation (as shown in Fig.[5). The average computation
time for the nearest-SPD approximation and convex optimiza-
tion were 0.05 and 358 milliseconds per time step, respectively.

Figure [4] shows the average distances between the ground

truth matrices of K and the estimations computed from the
nearest-SPD approximation and convex optimization methods.
It is observed that convex optimization provides slightly bet-
ter estimates, but significantly compromises the computational
cost of the estimation process when compared to the nearest-
SPD approximation. Note that in order to compute the estima-
tion error on 87, different metrics were used, namely: (1) the
affine-invariant, (2) the log-Euclidean, and (3) Jensen-Bregman
log-determinant (for more details about these metrics, readers
are advised to refer to [27]).

6.1.2. Force-based variable impedance for MSD system

In this section, we introduce a toy example using an MSD
simulation to evaluate the two approaches described in Sec-
tions 4 and [3] for learning force-based variable impedance. The
MSD system started from a rest position with an initial spring
stiffness K” initialized as a horizontally-aligned ellipsoid. Dur-
ing the simulation, external forces f¢ were applied to stimu-
late the system dynamics, while K* was continuously rotated
through RTK”R until reaching a vertically-aligned ellipsoid (as
shown in Fig. [6h and [6k-fop). These time-varying stiffness pro-
files, along with the applied forces f¢, are then used as the
dataset for training two different 4-states GMMs as described
next.

GMM/GMR over Cholesky decomposition: Let us denote v*
as the vectorized version of the Cholesky factor K. Then, we
define £ = f* and £° = v, so that a training datapoint is given
by & = [,v"]". During reproduction, the desired Cholesky

vector is computed from the standard GMR as V2~ PHPIE).
Given ¥¥ we can obtain ‘IA(P to later reconstruct the desired stiff-
ness matrices as K = ‘IA(?T‘}A(yg.

GMM/GMR over SPD manifold: We define E;77 = diag(fe)

and Egp = KP, so that, a training datapoint is defined by

U}

_ (diag() 0)
‘( o K

Here, the desired stiffness is computed directly from the

GMR over an SPD manifold as IA{P ~ P(Kplf'e ) (see Fig.
middle).

Figure [6c-bottom displays the demonstrated stiffness ellip-
soids (in gray) along with the centers M; of the four compo-
nents of the GMM encoding Zpp in the SPD manifold. Note
that the first and fourth GMM components (in blue and violet,
respectively) satisfactorily encapsulate the pattern observed in
the MSD stiffness at the beginning and end of the demonstra-
tions, in both shape and orientation. The remaining components
encode the temporal evolution of the stiffness.

The desired stiffness profiles reproduced by GMR are dis-
played in Fig. [THop plot as ellipsoids, whose colors match the
distribution of the GMM components in Fig. [6c-bortom. The
middle plot of Fig.[7]shows the match between the ground truth
ellipsoids profile in red and the retrieved one from GMR at dif-
ferent time steps. The bottom plot of the same figure shows
the reproduced stiffness ellipsoids profile in different time steps
coinciding with the ground truth, both displayed over the Carte-
sian trajectory of the MSD. Note that the results of GMM/GMR
for both stiffness representations are almost identical, so we
here report only the results corresponding to GMM/GMR over
the SPD manifold.

Figure [§] illustrates a comparison of the average distances
between the ground truth stiffness and the GMR output when
using the Cholesky decomposition or Riemannian manifolds.
The distances are almost identical in both cases. However, it is
worth highlighting that the computational time of GMM/GMR
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Figure 7: Reproduction of the stiffness profile for MSD using GMR on S
Top: Desired stiffness ellipsoids estimated by GMR, where colors match the
GMM components distribution in Fig. EI:-bottom. Color overlapping corre-
sponds to more than one GMM components influencing the regression. Middle:
stiffness ellipsoids of the ground truth (in red) at different time steps matching
the GMR estimates. Bottom: The retrieved stiffness ellipsoids in different time
steps coinciding the ground truth over the Cartesian trajectory of the MSD.

over the SPD manifold is significantly higher than that of the
model encoding the Cholesky decomposition (see Table[2).

Table 2: Computation time in seconds for GMM/GMR in both Cholesky and
SPD in the case of 2D.

Cholesky representation ~SPD manifold
GMM 0.0629 54.0591
GMR 3.2E-4 6.9E-2

6.1.3. Learning SPD matrices in high dimensional spaces

Recall from section [6.1.2] the efficiency of GMM/GMR on
Cholesky and SPD manifold is almost identical for a 2D sys-
tem. Here, we are interested in testing if their performance de-
teriorate in higher dimensional spaces, for example when the
model is required to encode the inertia matrix of a redundant
manipulator.

In this simulation, we used the Robotics Toolbox for MAT-
LAB [28] to simulate a Barrett WAM 7-DoF manipulator,
whose dynamics is described by

7(q,q, §) = B(q)g + C(q, q) + G(q), (25)

where q,q,(,T € R’ are joint positions, velocities, acceler-
ations, and torques of the manipulator. C(q,q) denote the

I GMR on Chol.
I GMR on S
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=
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Figure 8: The distance error between the stiftness profile obtained by GMR
over Cholesky decomposition and those obtained by GMR on SPD manifold
using different SPD matrix distances.

Coriolis and centripetal forces while G(q) is the gravity term.
B(q) € R7 is SPD and represents the inertia matrix of the ma-
nipulator.

The simulated experiment is designed by generating differ-
ent trajectories (which act as different demonstrations), using a
minimum jerk algorithm, between an initial and final configu-
ration, which belong to different areas in the robot workspace.
Each trajectory is composed of 100 datapoints where B(q)
is calculated at each datapoint. The joint trajectories and
corresponding inertia matrices are used later as training data
for both GMM/GMR methods. In this simulation we used
five demonstrations to train two, three, and four states GMM
(G =2,3, and 4).

Regarding the model trained with Cholesky decomposition,
the inputs and outputs are defined as & = q and £9 = b (where
b is the vectorization of the Cholesky factor of B). We learn a
GMM using datapoints given by & = [q,b]" and subsequently
obtain a desired vectorized version of the Cholesky factor of the
inertia matrix computed from the standard GMR as b~ P(blq).
From b we can now reconstruct the desired inertia matrices B
using Cholesky decomposition.

I GMR on S
I GMR on Chol.

dist. error

2 3 4
# of states G

Figure 9: Comparison between the inertia matrix computed using GMM/GMR
on Cholesky and on SPD. Log-Euclidean is used to compare the GMR results
by training 2, 3, and 4 states GMM using 5 demonstrations.

Table 3: Computation time in seconds for both GMM/GMR approaches

2-states  3-states 4-states
GMM on Chol. 0.0778 0.0504 0.0377
GMR on Chol. 3.0E-4 3.3E-4 3.4E-4
GMMon SPD  64.5438 88.7110 127.9287
GMR on SPD 0.5702 0.8553 1.1917

On the other hand, the input and output variables for
the model trained over the SPD manifold are defined as
Err = diag(q) and Epp = B, and therefore a training datapoint
of each dataset for GMM is given by

= _ (diag(q) 0
E= 0 K
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Figure 10: Mean and standard deviation of the computational time [sec] for 50
runs as a function of data dimensionality. 7op: GMR over Cholesky vector.
Bottom: GMR over Riemannian manifold.

Here, the desired inertia is computed directly from the GMR
over an SPD manifold as B ~ P(B|diag(q)). As observed in
Fig.[] it is clear that GMM/GMR on an SPD manifold provides
a slightly better estimation of the inertia matrix than the model
trained with the Cholesky decomposition, but with significantly
higher computational cost, (see Table[3). In this experiment we
used log-Euclidean metric for comparison. The other metrics
have also been tested, however, they are omitted as they do not
add new information.

Finally, we evaluated the computational time required to im-
plement GMR at each time step for different dataspace dimen-
sionalities (see Fig. [I0). The statistical evaluation was com-
puted over 50 runs for each dimensionality value using GMR
for both Cholesky decomposition (Fig.[I0}fop) and Riemannian
manifold approaches(Fig. [[0}bortom). Here we used arbitrary
SPD matrices of dimensionality S to S2°. Notice that, for both
approaches, the computational time increases exponentially as
a function of the space dimensionality. Moreover, GMR with
Cholesky decomposition is significantly less expensive in com-
putational terms when compared to the Riemannian manifold-
based approach (e.g. ~ 0.0014 and ~ 3.9240 seconds at Sio,
respectively).

6.2. Real Experiments

The proposed approach was also evaluated experimentally
using a KUKA LWR 7-DoF robot, with the Fast-Research In-
terface, to perform two different tasks: (1) valve-turning task
(see Fig.[T), and (2) lifting task (see Fig.[I3). In both setups, the
robot was equipped with a gripper and a six-axis force-torque
sensor (ATI Mini45) attached between its wrist and the grip-
per. In both experiments, we programmed the KUKA robot in
joint impedance control mode. In both experiments we used the
Cholesky representation to encode the stiffness matrices. The
accompanying videos show both the demonstration and repro-
duction phases of the aforementioned experiments.

200 40 60 80 0 50 100

t t

Figure 11: Force-based variable stiffness retrieval of the valve-turning exper-
iment using GMM/GMR for Cholesky decomposition. Top: desired stiffness
profiles retrieved by GMR and one of the demonstrations, shown as green and
red ellipsoids, respectively. Bottom-left: influence of the three GMM com-
ponents on the force-driven GMR estimates. Bottom-right: the sensed force
profile during the execution of the task for a new valve, which used as an input
for GMR.

6.2.1. Valve-turning experiment

Robots in industrial floors, unstructured hostile environments
or other similar scenarios (where it is dangerous for human to
access) may require to open valves, doors, etc., that demand
to apply different control forces according to different friction
forces, mass, etc. In that sense, we hypothesize that sensed
forces convey relevant information regarding the control forces
needed to opening valves, which can be governed through stift-
ness variations.

In order to perform our experiment, the human teacher pro-
vides several demonstrations by kinesthetic teaching. The user
holds the robot end-effector and guides it along the desired tra-
jectory (in this case, to turn the valve) in such a way that the
desired task is successfully executed. Note that the kinesthetic
demonstrations are given so that the teacher guidance does not
interfere with the force sensor readings. We recorded robot po-
sition X, and its corresponding time derivatives x and X, as well
as the sensed forces at the end-effector f°. In order to vary
the valve friction across demonstrations, a screw controlling
its friction was tightened up, and subsequently four demonstra-
tions were recorded for each friction value. From these demon-
strations we estimated the stiffness profile using (3 and (@) and
window size L = 3 for each case (i.e. valve stiffness value).
In total we modified the valve friction five times (four of which
were used as training dataset, while the remaining corresponded
to a test case). The demonstration dataset was composed of the
estimated stiffness profiles and the sensed forces, which were
used to train the learning model.

A 3-states GMM (G = 3) was trained using four demonstra-
tions. This model was later used by GMR (as described in Sec-
tion[d) to compute the desired time-varying stiffness profile for
the unseen sensed forces during the reproduction of the valve



Figure 12: Objects used in lifting task experiment. The object emulates unex-
pected mass variations by interconnecting three blocks of wood using strings.
Five different block sets were used for learning and reproduction of the lifting
task.

turning. Given each stiffness matrix K" at every time step, a
force command F at the robot end-effector was computed by
using an impedance controller, which is then transformed to
desired joint torques using the Jacobian transpose J' as follows

r=J'F. (26)

The estimated stiffness profile obtained by GMR is shown
at the top plot in Fig. [TT} where the five red ellipsoids repre-
sent one of the demonstrations used to train the GMM. The fig-
ure shows how the model retrieves a time-varying stiffness pro-
file similar to the stiffness estimated from demonstrations. The
difference lies on the fact that the sensed forces during repro-
duction corresponded to a valve with a different friction force
(changed by the screw) that was not used during the demonstra-
tion phase. Note also that the robot starts and finishes the task
with low stiffness values as the task dynamics required, while
displaying higher stiffness while turning the valve.

6.2.2. Lifting task

Manipulating objects whose mass varies over time has many
applications. For example, lifting deformable objects (e.g.: iron
chains in industry or mattress at home), or in the case of wait-
ers loading and unloading their trays with a large diversity of
objects. These scenarios share the same idea, which is manip-
ulating dynamic mass objects, which requires to adapt the arm
stiffness according to the sensed mass variation.

The aim of this experiment is to illustrate the ability of the
proposed approach to adapt the robot stiffness to sudden force
variations. For example, sudden force variations induced by the
gravitational loading during a lifting task. To emulate that, we
designed an object composed of three wooden blocks intercon-
nected by strings, as shown in Fig.

In order to perform the experiment, the human operator
demonstrates the task several times using kinesthetic guiding,
(see Fig.[[3). In this case, we provided five demonstrations for
four different sets of objects (their weights are in Table [ to
estimate the stiffness profile, using (3) and (@) and window size
L = 3, resulting in four demonstrations of different stiffness
profiles with corresponding sensed forces, which were used to

10

Figure 13: A human operator teaches the robot how to lift a chain of blocks.

Table 4: Weights in [Kg] of the blocks used in the lifting task experiment.

1% set 0.561 | 0.553 | 0.552

Demonstrations 27 get 0.416 | 0.434 | 0.428
3 set 0.346 | 0.288 | 0.319

410 et 0.527 | 0.593 | 0.563

Reproduction | unseen set | 0.386 | 0.353 | 0.350

train a 3-states GMM. This model was used later by GMR (Sec-
tion ) to estimate the desired time-varying stiffness profile for
unseen sensed forces (produced by a set of objects of different
mass), during the reproduction of the lifting task. The desired
time-varying stiffness profile is used by an impedance con-
troller to calculate the Cartesian control forces at the robot end-
effector, which are then transformed to desired joint torques us-
ing the Jacobian transpose.

Figure [T4] shows the reproduced Cartesian trajectory of the
manipulator end-effector in the lifting task experiment. Note
that the resulting Cartesian trajectory (blue circles) followed by
the robot end-effector is similar to those observed during the
demonstration phase. Figure [I5]|shows the desired stiffness el-
lipsoids (in green-top), for the lifting task, reproduced by GMR
over time. In the same figure, the five red ellipsoids are taken
from one of the demonstrations in order to show a reference
stiffness evolution for comparison purpose. Note that the stiff-
ness ellipsoids profile retrieved by our model follows a similar
temporal evolution as the stiffness estimated from demonstra-
tions. The difference lies on the fact that the sensed forces dur-
ing reproduction corresponded to a new set of blocks that was
not used during the demonstration phase. Noticeably, the robot
lifted the new set of objects following the desired vertical tra-
jectory as its stiffness adapted over time.

7. Discussion

In this paper, we exploited a simple interaction model to ob-
tain local stiffness estimates that heavily rely on force percep-
tions, which entails a relevant research work aimed at learn-
ing complex manipulation skills. The stiffness estimation is ap-
proximated to the nearest SPD matrix using (@). However, we
also demonstrated the possibility to achieve slightly better stiff-
ness estimates using convex optimization, which significantly
compromises the computational cost of the estimation process.

Moreover, we provided an extensive analysis to compare
Cholesky-based and geometry-aware models to learn and re-
trieve full stiffness matrices. In this vein, as stated in [26]], the
set of S matrices is not a vector space since it is not closed



0.3

N
0.2

0.5 0.55 0.6 0.65

X

0.7 0.75 0.

Figure 14: Lifting task: gray curves represent the Cartesian trajectories of the
robot end-effector during the demonstrations, the red one depicts the least-
square estimation, while the blue circles represent the Cartesian trajectory re-
produced by GMR on Cholesky decomposition.
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Figure 15: Force-based variable stiffness retrieval of the lifting task using
GMM/GMR for Cholesky decomposition. Top: desired stiffness profiles re-
trieved by GMR and one demonstration, shown as green and red ellipsoids,
respectively. Bottom: the sensed force profile during the execution of the task
for a new set of blocks, which was used as an input for GMR.

under addition and scalar product, and thus the use of classical
Euclidean space methods for treating and analyzing these ma-
trices is inadequate. The use of Euclidean operations to treat
S matrices is still possible if accuracy is not imperative. In
this sense, Cholesky decomposition is a suitable representation
to work with SPD matrices in Euclidean space, while signifi-
cantly reducing the computational burden as shown in [14} 29],
and in Section [6.1.2]in this paper. Probabilistic models, which
typically assume uncertainties in the data, can properly handle
the inaccuracies introduced by the Cholesky decomposition as
previously shown in the MSD example.

The inaccuracy introduced by the Cholesky representation
arises from the fact that this decomposition does not permit to
compute actual distances (geodesic) between two SPD matri-
ces on 8. This can be observed in Fig. which displays
two single-state GMM trained using Cholesky and Riemannian
manifold over a set of covariance data {A,}??,. An initial arbi-
trary A, € Si was set and then interpolated through a geodesic
p that connects it with A,y = RTA,R. Note that the mean M;,q
lies on the geodesics while M,y,; does not. Regressed covari-
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Cholesky and S} representations, and resulting GMR for both cases.

Figure 16: Set of covariance data {A,} means of single-state GMM in

ances are computed directly from a time driven GMR using
t = [5.5,15.5,22,24] as inputs. The first two values are used
to test interpolation cases while the last two evaluated extrapo-
lation capabilities. Both approaches successfully regressed the
first two outputs, however, GMR on Cholesky failed to accu-
rately extrapolate the new covariances (as indicated inside the
blue circle). GMR on SPD successfully extrapolated new co-
variances that follow the geodesic path in the manifold.

Kronander et al. [14] also used GMM in Euclidean space to
directly encode full stiffness matrices using Cholesky decompo-
sition, however, their learning approach is exclusively governed
by the robot position. Furthermore, during the execution of the
task, the teacher wiggles the robot to make it more complaint,
or increases the pressure with which he holds the robot to make
it stiffer. However, this way of varying robot stiffness during the
execution is not suitable in tasks that demand physical contact.
In contrast, our approach directly uses the sensed forces to au-
tomatically estimate suitable full stiffness matrices at each time
step during the execution of the task (e.g. MSD simulation and
valve-turning experiment). Unlike [[14] and [17], driving the
learning and reproduction phases by force perceptions, endows
the robot with the ability to adapt its stiffness profile to differ-
ent situations described by unseen sensed forces (e.g. unseen
friction forces in the valve-turning task).

On the other hand, while it is clear that there exist signif-
icant differences in terms of computational cost between the
learning models presented in Sections ] and [5} we will explore
how robust these approaches may be when used with iterative
methods such as those in reinforcement learning. We expect
that geometry-aware methods provide more accurate informa-
tion about the search space, which may therefore help the al-
gorithm convergence with a fewer number of iterations when
compared with Euclidean-based techniques.

Finally, our approach successfully adapts robot stiffness not
only to continuous variation of forces over time, but also to
sudden force changes (e.g. lifting task). However, our learning
framework requires the robot to dynamically interact with the
environment, which might present some limitations for quasi-
stationary scenarios where different stiffness levels may also be
required (e.g., a waiter loading or unloading the tray). This may
involve the use of more sophisticated interaction models which
would, in turn, make the stiffness estimation process more com-
plex. Another alternative is to use simple interaction models to
obtain rough stiffness estimates which can be improved by re-
finement techniques based on RL approaches [[18].



8. Conclusions

In this paper, we introduced a new framework for learning
force-based variable impedance, which is exploited in robotic
manipulation tasks that required adaptive stiffness levels. The
skills learned in this paper relied on stiffness estimations com-
puted from human demonstrations, which were then used along
with the sensed forces to encode a probabilistic model of the
task. The resulting model was then used to retrieve a time-
varying stiffness profile by GMR. This framework endowed the
robot with the ability to adapt its stiffness autonomously during
the execution in function of the perceived forces.

We evaluated two different approaches to encode stiffness
matrices, namely, GMM/GMR over Cholesky decomposition
of the stiffness matrix, and GMM/GMR over the SPD manifold.
Both approaches were extensively evaluated using two simu-
lated models and two real experiments. The reported results
showed no significant differences regarding the stiffness profile
retrieved by both approaches in 2D, but the performance of the
Cholesky-based model slightly deteriorated when learning high
dimensional SPD matrices. The geometry-aware approach dis-
played a higher accuracy with a significant increased computa-
tional cost. The analysis pointed out that either approach may
be used for force-based variable impedance learning.

In future work, we plan to find connections between the
Cholesky decomposition and the operations that take place in
the SPD manifold. Also, we will work on exploration-based
learning methods in order to test which representation may be
more suitable, which will prove to be crucial when a robot
needs to significantly adapt its stiffness in order to perform suc-
cessfully in a large diversity of task situations.
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