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Abstract— Numerous robotics tasks involve complex physical
interactions with the environment, where the role of variable
impedance skills and the information of contact forces are
crucial for successful performance. The dynamicity of our
environments demands robots to adapt their manipulation skills
to a large variety of situations, where learning capabilities
are necessary. In this context, we propose a framework to
teach a robot to perform manipulation tasks by integrating
force sensing and variable impedance control. This framework
endows robots with force-based variable stiffness skills that
become relevant when vision information is unavailable or
uninformative. Such skills are built on stiffness estimations that
are computed from human demonstrations, which are then used
along with sensed forces, to encode a probabilistic model of
the robot skill. The resulting model is later used to retrieve
time-varying stiffness profiles. We study two different stiffness
representations based on (i) Cholesky decomposition, and (ii)
Riemannian manifolds. For validation, we use a simulation of a
2D mass-spring-damper system subject to external forces, and
a real experiment where a 7-DoF robot learns to perform a
valve-turning task by varying its Cartesian stiffness.

I. INTRODUCTION

Day by day robotic applications are bringing robots into
unstructured environments (e.g., houses, hospitals, museums,
etc.) where they are expected to perform complex manipu-
lation tasks that are hard to program. This difficulty arises
mainly because the environments are dynamic, uncertain, and
therefore unpredictable, making hard-coding an unfeasible
approach. In such environments, the robot may also need
to physically interact with tools, humans, or other robots,
where compliant motions are imperative for safe interactions,
further complicating robot programming. In contrast, humans
can efficiently perform different types of tasks in such envi-
ronments, even those requiring compliance control, because
of their outstanding adaptation capabilities and ability to
change the arm stiffness according to the task requirements.

Therefore, human expertise may be exploited in a robot
learning approach, where a robot learns manipulation tasks
that require variable impedance skills from human demon-
strations. In this vein, learning from demonstration (LfD) [1]
is a user-friendly and intuitive methodology for a human to
teach a new task to a robot, where task-relevant information
is extracted from several demonstrations. Standard LfD ap-
proaches have mainly focused on trajectory-following tasks,
however, there exist recent works aimed at extending such
learning paradigm to force and impedance control [2], [3].
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Fig. 1: Left: a human operator teaches a robot how to perform a valve-
turning task. Right: a snapshot showing the valve-turning task reproduced
by a KUKA LWR robot.

In this paper, we propose to exploit LfD to learn manip-
ulation tasks that require stiffness levels that vary according
to the state of the task. We also take advantage of the robot
force-based perceptions, which usually convey relevant in-
formation in robotic manipulation. Specifically, the proposed
learning framework implements kinesthetic teaching (Fig. 1-
left) to collect demonstrations of a manipulation task, where
both kinematic and dynamic data are recorded. The demon-
stration data along with a model of a mass-spring-damper
(MSD) system are used to estimate time-varying Cartesian
stiffness matrices (Sec. III-A). These are computed as the
closest symmetric positive semi-definite matrix (SPSD) of an
initial least-squares estimation (Sec. III-C). These estimates
are then used as desired stiffness matrices for corresponding
force patterns observed during the demonstrations. Both stiff-
ness matrices and forces are later probabilistically encoded
using a Gaussian mixture model (GMM). This model is
exploited during reproduction to retrieve variable stiffness
profiles by Gaussian mixture regression (GMR) (Sec. IV
and V). The main contribution of our LfD framework lies
on the exploitation of force sensing and variable impedance
control (VIC) to learn and reproduce manipulation tasks
requiring time-varying full stiffness matrices.! Beyond com-
pliant movements and corresponding safety aspects, variable
impedance skills allow the robot to perform a task using a
larger range of control responses when compared to standard
control methods. Moreover, we provide a different encoding
perspective where stiffness matrices are directly modeled by
our learning framework, which imposes new mathematical
constraints due to the symmetric positive semi-definiteness
of Cartesian stiffnesses.

The proposed force-based learning framework is exten-
sively validated in simulation using the model of a 2D
MSD system subjected to external forces. Moreover, a valve-

'We refer to variable impedance learning as the process of estimating and
reproducing variable stiffness profiles. Nevertheless, the proposed approach
can also be used to learn variable damping controllers.



turning task is used as a real scenario to further evaluate the
performance of the proposed approach, as shown in Section
VI. Conclusions and future research are given in Section VIIL.

II. RELATED WORK

Traditionally, robot learning has focused on trajectory
following tasks [4]. However, the new generation of torque-
controlled robots has made it possible to extend learning
capabilities to tasks that require variable impedance skills [3],
allowing robots to exhibit compliant motions when physi-
cally interacting with the environment. This new research
trend exploits impedance control [5], where the controller
resembles a virtual MSD system between the environment
and robot end-effector. This control approach allows robots
to interact with the environment or humans more safely and
in an energy-efficient way.

Previous works have been devoted to understand how
impedance is modulated when humans interact with the
environment [6] or to transfer human’s impedance-based
skills to robots [7]. However, robot learning capabilities were
not developed to automatically vary impedance controller
parameters to satisfactorily adapt in face of unseen situations.

Robot learning approaches have recently gained great
interest for modeling variable impedance skills. Peternel et
al. [8] proposed a single muscle impedance control interface
for a compliance learning framework. Such an approach
required prior knowledge on human anatomy and long cali-
bration time. The authors extended their work by introducing
a 3-DoF force feedback at the operator’s end-effector [9].
Peternel et al. used human impedance for learning, while our
approach estimates the robot stiffness from the task dynamics
observed across multiple demonstrations.

Variable impedance also plays an important role in human-
robot collaboration. In [10], a VIC is introduced based on
the human arm stiffness estimation. They varied the virtual
damping coefficient of the robot as a function of the esti-
mated stiffness of the end-point human arm, and differential
changes in position and force. Rozo et al. [11] proposed
a framework to learn stiffness in a collaborative assembly
task based on visual and haptic information. The estimated
stiffness relied on a task-parameterized GMM, where each
Gaussian component was assigned an independent stiffness
matrix. The estimations were obtained via weighted least-
squares (WLS) and the Frobenius norm. Recently, the authors
reformulated their stiffness estimation method as a convex
optimization problem [3]. Moreover, the robot movements
were governed by time-driven attractor trajectories, which
demanded to manually specify an initial stiffness to compute
the attractor dynamics. Instead, our work focuses on force-
driven skills learned by a probabilistic model that directly
encodes full stiffness matrices estimated from the task dy-
namics, without requiring an initial approximation of the
robot stiffness nor computation of attractor trajectories.

Manipulation tasks involve contact with the environment,
where force sensing plays a crucial role for successful robot
performance. In this context, force-based skills have been
recently addressed from a robot learning perspective in [11],

[12], [13], [14]. Kormushev et al. [13] encoded position and
force data into a time-driven GMM to later retrieve a set of
attractors in Cartesian space through least-squares regression.
Stiffness matrices were estimated using the residuals terms
of the regression process. In [12], kinesthetic demonstrations
were used to teach haptic-based stiffness variations to a
robot. Their approach retrieved full stiffness matrices via
GMR, which used a GMM that encoded the robot Cartesian
position and the Cholesky vector of the stiffness matrix.
During reproduction, the teacher wiggled or applied strong
pressures to produce haptic data aimed at varying the robot
stiffness. This on-the-fly intervention may not be suitable in
tasks that demand (delicate) physical contact with the envi-
ronment. Also, the stiffness estimates required a manually-
designed initial matrix. On the contrary, we estimate the
stiffness directly from the task dynamics and interaction
forces observed across demonstrations without interfering
the task execution nor predefining an initial stiffness. In
addition, driving the learning and reproduction phases by
force perceptions, endows the robot with the ability to
adapt its stiffness profile to different situations described by
unseen sensed forces (e.g. unseen friction forces in the valve-
turning task). Note that the demonstrated task dynamics was
exploited in grasping [14] to estimate object-level stiffness
matrices as a constrained optimization problem.

Rey et al. [15] used Path Integrals (PI?) policy search
for time-invariant policies to learn variable stiffness and
motion simultaneously. Their work was built on [16] where
PI? was used with dynamic movement primitives to learn
stiffness matrices through a set of basis functions that linearly
depended on a time-driven policy parameter optimized by
PI2. Rey et al. regressed the policy parameters via GMR,
which allowed for state-dependent policies. However, iter-
ative learning methods can be time consuming in some
applications and impractical in others. Therefore, we focus
our work on a learning approach where a model of the
task is learned from human examples, which may also
be combined with the aforementioned iterative approaches
if safe exploration strategies are considered. Moreover, in
contrast to our approach, the foregoing work estimated a
diagonal stiffness matrix profile and did not exploit force-
based perceptions to reproduce the task.

III. PROPOSED APPROACH

A successful LfD should include both a learning frame-
work that encodes the raw data as well as an appropriate
model that encapsulates the dynamics of the desired behavior.
In this line, we exploit a linear dynamical model to estimate
local full stiffness matrices, which are then encoded along
with force data by a probabilistic model. More specifically,
during the demonstration of the task, we record the robot
Cartesian position x, its velocity x, acceleration X, and the
associated sensed Cartesian forces f¢ with respect to the
robot frame. Using the collected data, we first estimate the
stiffness required to locally fit the dynamics of a virtual MSD
system as explained next. After, a GMM is trained to encode
both force and stiffness data. The model is later used by



TABLE I: Phases of the proposed approach

1. Task demonstrations
- Performing N X k recordings for a task.
k demonstrations in N different situations.
2. Stiffness estimation

- Estimate KP using (3) and (4) (Section III-B).

- Compose dataset {f'f,n, f{fn}gzl for learning (Section III-C).
2. Model fitting (Sections IV and V)
- Learn model parameters ® using (5) or (12).
4. Reproduction (Sections IV and V)
- Set the input Z and output O elements.
for ¢ + 1 to T" (for each reproduction time step)
- Given an input Z, estimate the output O
via GMR using (7) or (18).
- Compute Cartesian force command F' at the robot end-effector
using (2) under the unitary-mass assumption.
- Compute desired joint torques using (24)
end

GMR to retrieve continuous stiffness profiles given unseen
force trajectories during the reproduction of the task.

A. Interaction model

Using impedance control helps overcome environment
uncertainties and avoids large impact forces, since robots are
controlled to modulate their motion/compliance according to
sensed forces arising from the interaction between a robot
and the environment. In this work, we model the robot end-
effector as a unitary-mass 1, affected by two forces: control
input f¢ and external/sensed forces f¢, which leads to the
simple dynamic model [17]

Tk = £+ £°. (1)

The dynamics governing the robot behavior is modeled as
a virtual MSD system as follows

Lus = K] (x — x;) — K% + £5, )

where K7 and K} are full stiffness and damping matri-
ces, while X represents the equilibrium position (or desired
trajectory) of the virtual system.

B. Stiffness estimation from demonstrations

The full stiffness matrix K” can be estimated from
demonstrations using different approaches. For example,
GMM was used in [3] to cluster the demonstrated data,
and then WLS was applied to estimate a KZJ associated
with each Gaussian component ¢ using convex optimization.
This approach required several iterations for convergence,
which increases the computational cost of the estimation
process. In [18], K" is estimated from the inverse of the
observed position covariance encapsulated in a GMM. Their
approach is limited to tasks displaying variability in position
trajectories across demonstrations, which does not arise in
scenarios where the end-effector is constrained to follow a
single Cartesian path (e.g., valve-turning tasks). Unlike [3],
[18], we propose to use a sliding window technique to carry
out local stiffness estimations that fulfill (2) at each time step
t. This method is only parametrized by the window length
L. Note that the use of clustering techniques such as GMM
may demand to use a high number of Gaussian components
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Fig. 2: Sliding window approach. A rectangular window with a fixed width
L slides across the data over time. For each of these windows, KP is
estimated through (3). The arrow indicates the sliding direction.

for highly-nonlinear dynamic tasks, significantly increasing
the number of parameters for the estimation process.
Specifically, in our estimation method, a window of length
L moves all along the demonstration data x,x,%, and f°,
and the full stiffness matrix is estimated over the data
covered by the window for each ¢. Formally, from (2),
let us define {Xx =% —x}; and {y = Iyyx + KYx — f¢},
for all the datapoints in the window, for all demonstra-
tions. Then, by concatenating the resulting data, matrices
X =%1||Xa||...||Xx and Y = 3]||¥5]| - - . ||y, are defined
(Fig. 2). The stiffness matrix estimation is carried out at each
t by solving the following linear system using least-squares

XK” =Y. (3)

However, a stiffness matrix K” € ST is symmetric and
positive definite (SPD), which means that the estimation
computed by (3) is just a rough approximation that does
not fulfill the SPD constraints. Inspired by [11], we resort to
the approximation formulated in [19] to compute the nearest
SPD matrix from the approximation in (3), as follows,
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where H is the symmetric polar factor of B = USVT'.
Note that some of the approximated matrices might be
on the boundary of the SPD matrices space, resulting in
symmetric positive semi-definite matrices. In this case, each
eigenvalue \; ~ 0 of KP is constrained to have a minimum
value €, and then KP is reconstructed using its eigende-
composition I~{7> = QAQ_l. The damping term in (2) can
be chosen either experimentally or using the eigendecom-
position of KP to keep the system critically damped, e.g.
K) = Q(CA%)QT, where Q is the eigenvectors and A is

. ~ P . .
the eigenvalues of K , and ¢ € R™ is a tuning parameter.

C. Stiffness learning

Some manipulation tasks heavily depend on force percep-
tions, which play a relevant role when vision information is
unavailable or uninformative. We propose an approach that
learns and reproduces variable impedance skills based on
interaction forces. In this paper, given the estimated KP and
sensed forces £¢, we introduce the following two methods to
learn force-based variable impedance skills:



1. Learn K usmg GMM/GMR for Euclidean data. Here,
we represent K by its Cholesky vector v¥ ob-
tained by Vectorlzmg the upper triangle factor K7 in
KP = ICP K7, [121. Using this representation we re-
duce the data space dimensionality to m + m(m — 1)/2
instead of vectorizing the whole matrix K , which
replicates stiffness information due to its symmetry.

2. Use a tensor-based formulation of GMM/GMR on the
Riemannian manifold ST [20], [21] to directly learn

KP, which avoids the reparametrization of the above
approach and exploits the geometry of the SPD space.

In the proposed framework, we exploit (3) and (4) to
estimate the desired time-varying stiffness K using the
recorded data {x,%,%,f°} of a subset of k demonstra-
tions given under the same task situation 7, with n =
1,...,N, and where N represents the number of different
task instances. Each task situation 7, is characterized by
different task conditions, which basically affect the task
dynamics and interaction forces. Therefore, for NV different

situations, N different time-varying stiffness proﬁles are

N

estimated, leadlng to the training dataset {ft n tn h—1s

= % (Zs:l te,s)
the subset of £ demonstrations at each ¢t. Table I summarizes
our approach and its different stages.

IV. GMM/GMR ON CHOLESKY VECTOR

First, let us denote A as any arbitrary SPD matrix and L
its Cholesky factor, so that A = L'L. This representation
is here exploited to learn a joint probability distribution of
the vectorization of the upper triangle matrix L and other
data vector(s). Also, let us define the input vector 5% and
output vector E?, which form a demonstration datapoint
&, = {&/,€}. The training dataset {{¢,} = {£&7,¢}},
is assumed to be normally distributed and modeled by a
mixture of G Gaussians

G
P (Etl’é.?) = ZWZN(Et; K, El)v &)

=1

where f; is the mean sensed force across

where ©® = {m;, p;,;}%, are the prior, mean, and co-
variance parameters. The superindexes Z and O respectively
indicate input and output. Maximum-likelihood estimation
of the mixture parameters is iteratively performed using the
standard Expectation-Maximization (EM) algorithm [4].

In literature, GMM is usually combined with GMR, pro-
viding an elegant solution for encoding and synthesizing
motor skills in robotics [22]. GMR is used here to retrieve
the vectorized versions of L, which are subsequently used
to reconstruct a desired SPD matrix A. Formally, let us
decompose the GMM parameters p; and 3; as

o []. me (23]
Ky % X

During the reproduction of the task, the conditional dis-

tribution P(£°]¢7) is estimated as follows,

P (e01er) = N (058, 57), ™

(6)

where
g —;hl &0 (€7), ®)
il (€)= ul + =P7SL (67 - uf),
£ = i (st)(il sl E)al(€)')
— i
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The upper triangle matrix L of the Cholesky decomposition
is reconstructed from the mean ;lo and so the desired SPD

AT~

matrix becomes A = L L.

V. GMM/GMR oN SPD MANIFOLDS

As K” e S, a geometry-aware approach that allows
us to encode and retrieve SPD matrices is an important
tool to learn variable impedance skills. In this context, the
model introduced in [20] deals with the geometry of the SPD
manifold and allows us to build joint and conditional proba-
bility distributions over it. This model is mainly built on the
incorporation of a Riemannian metric, which allows the set
of SPD matrices to form a Riemannian manifold [23]. Such
metric defines the geodesics (a generalization of straight lines
in Euclidean space), which is the minimum length curves
between two points on the manifold.

A. Riemannian Manifold of SPD matrices

A Riemannian manifold M is a topological space in which
each point locally resembles a Euclidean space. For each
point p € M, there exists a tangent space 7, M (endowed
with a positive definite inner product), which corresponds
to the space of symmetric matrices for the case of the
SPD manifold. To switch between 7pM and M, which
is needed to compute statistics over Riemannian manifolds,
three operations are required: exponential and logarithm
maps, and the parallel transport.

The exponential map Expp(A): 7r M — M is a function
that maps a point A in the tangent space to a point Q € M,
so that it lies on the geodesic starting from I' € 87" in
the direction of A. On the other hand, the logarithm map
Logr(Q): M — TrM is the inverse of the exponential map.
The aforementioned mappings are computed as [20]

Expp(A) =T? exp(T 2 AT 2)I'z, (10)
Logp(Q) = T'7 log(T"2QT2)I'z. (11)
Moreover, in order to move elements between

tangent spaces while maintaining the angle between
them constant, we need to wuse parallel transport
Broq: TrM— TgM. This is computed for a

matrix V as Br.q(V) = Cruq T CquHQ, where
Cro,q = T2 exp(AT "3 VI~2)T' 2 [20].



B. GMM on SPD

In general terms, for a given random variable = € M, a
GMM on the SPD manifold is defined by

E; My, V), 12)

P(E) Z TN (
where G is the number of Gaussian components, M € M
is the mean (and center of the tangent space 7ng), and
Y € TmM is the covariance tensor. The GMM parameters
e = {m,Ml,El}lG:l on the manifold are estimated using
EM algorithm as follows,

E-step:
E’Lan
PR = — T NMEMY) e S pge
> i1 TiNMm(Eis My, Y5) i—1
(13)
M-step:
M; « EXle (Z P(l|Zi)Logy, (E)>7 (14)

N
1 —_ _ -
Vi« N Z'P(”:i)Long (Ei) ® Logyy, (Bi),  (15)

=1

N,
Wl(—ﬁ.

C. GMR on SPD

During the reproduction, the conditional distribution
P(Eoo|Ezz) is computed via GMR. Formally, by defining
inputs Ez7 and outputs Epp, a block decomposition of =,
M, and Y is given as follows,

(16)

—_ _EII 0 Mzz 0
== —_ , M=
| 0 ﬂoo] { 0 M(’)(’):|
i y%% 0 0 0 (17)
y_ | 0 Y| o o
1o o [Y5E o |’
0 0 0 Y33

where the 4" —order tensor Y is represented by separating
the different fibers with bars. With this decomposition,
manifold functions can be applied individually on input and
output parts, e.g.

_-\ _ EXpM (EII) 0
N e R

GMR on an SPD manifold approximates the conditional
distribution by a single Gaussian
— — 9 $,00
P(EoolEzz) ~ N (Moo, Yo0):  (18)

where Mpo is calculated iteratively until convergence with

~I771
Y, = Logy,,,(Moo,) — yoo 1Yzz,1 Logs,, (Mzz,),
19)
Moo « Expyy, <Z hm>, (20)
l

where

N(E; M , 11
By — mN(Ezz; Mzz1,Y717,1) o1

G
S5y N (Brz; Mzz,;, Y77 ;)

describe the responsibilities of the GMM component [ in

the regression. The 4"—order tensor covariance yoo is
calculated in the tangent space of the estimated mean as

<00 < < T771
yoo = Z hy <yoo,l yoo lyZIl yzzz +1® Tl)

(22)
_ E7T AO
0 Mool

VI. EXPERIMENTS

[

where Y = By, ,=(Y) and

Our framework was evaluated in both simulation and a real
scenario. The approaches were implemented in MATLAB®
for simulation, and in object oriented C++ for real experi-
ments. We used a computer running Ubuntu 16.04 LTS with
Intel Core 17 — 6700 CPU 3.40 GHz, 16 GB of RAM. The
experiments used in the evaluation are summarized below:

o Comparison between SPD approximation (4) and con-

vex optimization [3] to estimate K

« Stiffness learning and reproduction with a 2-DoF MSD

o Comparison between Cholesky and Riemannian mani-

fold representations.

o Real experiment on a 7-DoF KUKA-LWR robot

equipped with a gripper to perform a valve-turning task

For the first two simulated experiments, manually-
designed f° profiles were used to compute the MSD dy-
namics [x, X, X] at each ¢ for specific stiffness and damping
values. This stiffness is considered as our ground truth for
comparison purposes. Different springs were distinguished
by their stlffness values. For each spring, the stiffness esti-
mation K was obtained from five demonstrations (differing
in the applied external forces) using a window length L = 3
and damping coefficient K} = diag(50) [N.s/m].2

A. Stiffness estimation

As described in Section III-B, KP can be estimated
either using (3) and (4), or alternatively formulating the
estimation problem as a convex optimization [3]. In the latter
approach, the objective is to minimize the Euclidean norm
of the residuals, subject to the matrix inequality constraint
introduced by the positive semi-definiteness of K7,

minimize|| XK” — Y||; subject to K¥ = 0.  (23)

Figures 3 and 4 show a comparison between the ground
truth stiffness ellipsoids and the estimations obtained from
the nearest-SPD approximation (4) and convex optimization
(23). We used ten MSD systems of different time-varying
stiffness. During the MSD simulation, the stiffness matrices
were initialized from an horizontally-aligned ellipsoid, which
was then continuously rotated clockwise until reaching a 45

2Parameters such as L, G, €, and number of demonstrations were
experimentally chosen.
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Fig. 3: Different distance-based errors of the estimated stiffness using
nearestSPD approximation (4) and convex optimization (23).
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Fig. 4: Top: stiffness ellipsoids of the ground truth at different time steps
matching the nearestSPD and convex optimization estimations. Bottom: 2D
plot showing the hand-coded 45 degrees rotation of the stiffness ellipsoid.
Stiffness ellipsoids are centered at O for visualization purposes. Negative
values in the vertical axis do not imply that the matrices are not SPD.

degrees rotation (see Fig. 4). The average computation time
for the nearest-SPD approximation and convex optimization
were 0.05 and 358 ms per time step, respectively.

Figure 3 shows the average distances between the ground
truth stiffness and the estimations computed from the nearest-
SPD approximation and convex optimization. The convex
optimization method provides slightly better estimates, but
significantly compromises the computational cost of the es-
timation process when compared to the nearest-SPD approx-
imation. Note that in order to compute the estimation error
on S'", different metrics were used, namely: (1) the affine-
invariant, (2) the log-Euclidean, and (3) Jensen-Bregman log-
determinant (for more details about these metrics, see [24]).

B. Force-based variable impedance for MSD system

Here, we use the MSD simulation to evaluate the ap-
proaches described in Sections IV and V for learning force-
based variable impedance. The MSD started from a rest
position with initial stiffness K” initialized as a horizontally-
aligned ellipsoid. During the simulation, external forces f°
were applied to stimulate the system dynamics, while K”
was continuously rotated until reaching a vertically-aligned
ellipsoid (Fig. 5-left). These time-varying stiffness profiles
along with applied forces £ are then used as the dataset for
training two different 4-states GMMs as described next.

GMM/GMR over Cholesky decomposition: Let EI =
f° and SO = vP, so that a training datapoint is
given by & = [f°,v”]T. During reproduction, the desired
Cholesky vector is computed from the standard GMR as
VP ~P(vPIf). Given ¥v7 we can obtain K" to later re-

QA
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Fig. 5: Force-based stiffness learning/retrieval for MSD using GMM/GMR
on 8'". Left: The Cartesian trajectory of the MSD, starting from rest at
point (5,0), and the stiffness ellipsoids at different ¢ for all demonstrations.
Top-right: demonstrated stiffness ellipsoids over time (in gray) and centers
M, of the 4-states GMM. Middle-right: influence of GMM components
on the force-driven GMR estimates, where colors match the distributions
shown in the fop plot. Bottom-left: retrieved stiffness ellipsoids (in green)
and five ellipsoids (in red) from the ground truth profile to show the match.
Stiffness ellipsoids are centered at 0 for visualization purposes.
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Fig. 6: Different distance-based errors for the stiffness profiles obtained by
GMR using the Cholesky vector and S}".

TABLE II: Computation time in seconds for both approaches.

SPD manifold
54.0591
6.9E—2

Cholesky factor
0.0629
3.2E—4

GMM
GMR

- P o ~P
construct the desired stiffness matrices as K = IC - <
GMM/GMR over SPD manifold: Let E77 = diag(f) and

Eoo = IN{P, so that a training datapoint is defined by
diag(f) 0
o K

[

Here, the desired stiffness is computed directly from GMR
as KPNP(KPE'e).

Figure 5-top-right displays the demonstrated stiffness el-
lipsoids (in gray) along with the centers M; of the four
components of the GMM in the SPD manifold. Note that
the first and fourth GMM components (in blue and violet,
respectively) satisfactorily encapsulate the pattern observed
in the MSD stiffness at the beginning and end of the
demonstrations, in both shape and orientation. The remaining
components encode the temporal evolution of the stiffness.
The middle-right graph displays the influence of the GMM
components over time. The bottom-right plot of Fig. 5 shows
the desired stiffness profile (in green) retrieved by GMR,
and five red ellipsoids corresponding to the ground truth
profile. Notice the accurate match between these two profiles.
Both estimated stiffness matrices used in GMM and the
reproduced ones by GMR lie within the SPD manifold S’
as shown in Fig.7-left.

Figure 6 shows a comparison of the average distances



Ay
Mipa
Mr/ml

A

Ahol

Fig. 7: Representation of SPD data in the the SPD manifold S™". Left:
representation of demonstrated stiffness matrices (gray) used in GMM and
stiffness profile retrieved (green) from GMR for the experiment reported in
Section VI-B. Right: set of covariance data {At}fgl, means of single-state
GMM in Cholesky and S representations, and resulting GMR for both
models.

between the ground truth stiffness and the GMR output when
using the Cholesky decomposition or Riemannian manifolds.
The distances are almost identical in both cases. However,
note that the computational time of GMM/GMR over the
SPD manifold is significantly higher than that of the model
encoding the Cholesky decomposition (see Table II).

C. Geometry-awareness vs. Cholesky factor

As stated in [23], the set of ST matrices is not a vector
space since it is not closed under addition and scalar product,
and thus the use of classical Euclidean space methods for
treating and analyzing these matrices is inadequate. The
use of Euclidean operations to treat S'" matrices is still
possible if accuracy is not imperative. In this sense, Cholesky
decomposition is a suitable representation to work with SPD
matrices in Euclidean space, while significantly reducing the
computational burden as shown in [12], [25], and in Sec-
tion VI-B in this paper. Probabilistic models, which typically
assume uncertainties in the data, can properly handle the
inaccuracies introduced by the Cholesky decomposition as
previously shown in the MSD example.

The inaccuracy introduced by the Cholesky representation
arises from the fact that this decomposition does not permit
to compute actual distances (geodesic) between two SPD
matrices on ST. This can be observed in Fig. 7-right, which
displays two single-state GMM trained using Cholesky and
SPD manifold over a set of covariance data {A;}72;. An
initial arbitrary A; € Si was set and then interpolated
through a geodesic p that connects it with Ay = RTAR.
Note that the mean M4 lies on the geodesics while My
does not. Regressed covariances are computed directly from
a time driven GMR using t = [5.5,15.5,22,24] as inputs.
The first two values are used to test interpolation cases
while the last two evaluated extrapolation capabilities. Both
approaches successfully regressed the first two outputs, how-
ever, GMR on Cholesky failed to accurately extrapolate
the new covariances (as indicated inside the blue circle).
GMR on SPD successfully extrapolated new covariances that
follow the geodesic path in the manifold.

D. Real Experiment

Robots in industrial floors or unstructured environments
may need to open valves, doors, etc., which demands to apply
different control forces according to the task conditions. We

hypothesize that sensed forces convey relevant information
regarding the control commands needed for successful robot
performance. These can be governed through stiffness varia-
tions, which is suitable for task involving physical interaction
with the environment. In this context, the proposed approach
was experimentally evaluated using a 7-DoF KUKA robot
to perform a valve-turning task (see Fig. 1). The robot was
equipped with a gripper and a six-axis force-torque sensor
(ATI Mini45) attached between its wrist and the gripper.
Note that the presented approach is not task oriented, but
a general approach to learn variable impedance skills based
on interaction forces. The valve-turning task introduced in
this section is used as an example of the practical usability
of the proposed approach.

A human teacher provided several demonstrations of the
task by kinesthetic teaching. The user held the robot end-
effector and physically guided it along the desired trajectory
to turn the valve. The kinesthetic demonstrations were given
so that the teacher guidance did not interfere with the force
sensor readings. We recorded the robot Cartesian position X,
and corresponding time derivatives x and X, as well as the
sensed forces at the end-effector £°. In order to vary the valve
friction across demonstrations, a screw controlling its friction
was tightened up, and subsequently four demonstrations were
recorded for each different friction. From these data we
estimated the stiffness profile using (3) and (4) with window
size L = 3 for each case (i.e. valve friction value). In total
we modified the valve friction five times (four of which were
used as training dataset, while the remaining corresponded
to a test case). The demonstration dataset was composed of
the estimated stiffness profiles and the corresponding sensed
forces, which were used to train a 3-states GMM (G = 3).

This learning model was later used by GMR (as described
in Section IV) to compute the desired time-varying stiffness
profile for unseen sensed forces during the reproduction
of the valve-turning. Given each K at every t, a force
command F at the robot end-effector was computed by using
an impedance controller, which is then transformed to desired
joint torques 7 using the Jacobian transpose JT as follows

+=J'F, (24)

Figure 8 shows the estimated stiffness obtained by GMR,
where the five red ellipsoids correspond to one of the
demonstrations used to train the GMM. Note how the model
retrieves a time-varying stiffness profile similar to those
observed during demonstration. The difference lies on the
fact that the sensed forces during reproduction corresponded
to a valve whose friction coefficient differ from those used
during the demonstration phase. Notice also that the robot
starts and finishes the task with low stiffness values as the
task dynamics required, while displaying higher stiffness
while turning the valve.

VII. CONCLUSIONS

We proposed a framework for learning force-based vari-
able stiffness, which is exploited in robotic manipulation
tasks. Local stiffness estimates were computed directly from
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Fig. 8: Force-based variable stiffness retrieval for the valve-turning experi-
ment using GMM/GMR for Cholesky decomposition. Top: desired stiffness
profiles retrieved by GMR one of the demonstrations, shown as green
and red ellipsoids, respectively. Bottom-left: influence of the three GMM
components on the force-driven GMR estimates. Bottom-right: sensed forces
profile during the execution of the task for a new valve, which was used
as input for GMR. Stiffness ellipsoids are centered at O for visualization
purposes.

the task dynamics using a computationally efficient sliding-
window approach. We evaluated two different approaches to
encode stiffness matrices. The first one used a GMM/GMR
over Euclidean space, where the Cholesky decomposition of
the stiffness matrix was employed as in [12]. The second
alternative exploited, for the first time, the SPD manifold-
based approach [20] to encode stiffness matrices in its
original space. Both approaches were evaluated using a
simulation of a 2D MSD system and a real experiment where
a robotic arm performed a valve-turning task that was learned
from human demonstrations. The reported results showed no
significant differences regarding the stiffness profile retrieved
by both approaches, which means that both representations
(and corresponding learning algorithms) are suitable when
learning and retrieving stiffness matrices. Nevertheless, the
geometry-aware approach shows better extrapolation capa-
bilities when compared to the Cholesky-based approach.

In future work, we plan to investigate the impact of
both Cholesky decomposition and Riemannian manifolds
on exploration-based learning methods. In this context,
Riemannian-based models may exploit the geometry of the
SPD space to reduce the number of explorations and to
find better local optima. This may prove to be crucial when
a robot needs to rapidly adapt its stiffness in order to
perform successfully in a large diversity of task situations.
We will also extend the proposed learning framework to
handle orientational stiffness learning.
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