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Abstract: On the quest for building autonomous robots, several robot learning
frameworks with different functionalities have recently been developed. Yet,
frameworks that combine diverse learning paradigms (such as imitation and re-
inforcement learning) into a common place are scarce. Existing ones tend to
be robot-specific, and often require time-consuming work to be used with other
robots. Also, their architecture is often weakly structured, mainly because of a
lack of modularity and flexibility. This leads users to reimplement several pieces
of code to integrate them into their own experimental or benchmarking work. To
overcome these issues, we introduce PyRoboLearn, a new Python robot learning
framework that combines different learning paradigms into a single framework.
Our framework provides a plethora of robotic environments, learning models and
algorithms. PyRoboLearn is developed with a particular focus on modularity,
flexibility, generality, and simplicity to favor (re)usability. This is achieved by ab-
stracting each key concept, undertaking a modular programming approach, mini-
mizing the coupling among the different modules, and favoring composition over
inheritance for better flexibility. We demonstrate the different features and utility
of our framework through different use cases.
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1 Introduction

Recent advances in machine learning for robotics have produced several (free and) open-source
libraries and frameworks. These ease the understanding of new concepts, allow for the comparison
of different methods, provide testbeds and benchmarks, promote reproducible research, and enable
the reuse of existing software. Nevertheless, several frameworks suffer from a lack of flexibility and
generality due to poor design choices. Lack of abstraction and modularity with high dependency
among modules hinder code reuse. This problem worsens when the user needs to combine different
incompatible codes together, or to integrate an existing one into her own code. Some frameworks
force to follow a standard, which might not suit the user needs. However, bypassing code standards
is not a good coding practice as many useful functionalities might be missed. Complying to their
standard requires to modify the original code, interface (possibly) incompatible frameworks, and/or
reimplement parts of the framework. This creates unnecessary overheads that considerably affect
the research activities, leaving less time to create modular and flexible code, and therefore ad-hoc
code that is hardly reusable is produced.

Available frameworks in robot learning [1] can be classified into two categories: “simulated en-
vironments” [2, 3, 4, 5, 6, 7, 8, 9, 10] and “models and algorithms” [11, 12, 13, 14, 15, 16]. In
both, frameworks tend to focus on specific learning paradigms such as imitation learning (IL) [17]
or reinforcement learning (RL) [18], and do not exploit their shared features, such as an environ-
ment, trainable policies, states/actions, and loss functions. In IL, a teacher provides demonstration
data while for RL a reward signal is returned by the environment, which results in different train-
ing algorithms. The majority of frameworks that provide simulated environments focus either on
RL [2, 3, 4, 5, 6, 7], or to a less extent on IL [8, 9, 10], which limits their applicability. As IL
and RL differ on few aspects, their integration and design into a single learning framework provides
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interesting opportunities. For example, IL can be used to initialize a policy which is then fine-tuned
using RL, leading to safer and faster policy search [19]. However, current environment frameworks
rarely exploit this feature.

To better illustrate our point, let us consider an RL setting where an environment inherits from an
OpenAI Gym environment [2], which several frameworks use [3, 4, 6, 7]. Such environment includes
the definition of state-action spaces, environment, and reward function. Also, let us consider an
environment that includes an inverted pendulum on a cart. The state consists of the cart position
and velocity, and the angular position and velocity of the pole. A simple reward function may count
the number of time steps the cart could balance the pole. Finally, let us define a neural network
policy that is specified outside the environment, which takes the 4D state vector and outputs the
action. Now, assume that the user wants to test the performance of a new model/algorithm on a
double inverted pendulum on a cart. In this case, the user would have to define manually a new
environment with a new robot, and a larger dimensional state vector. This, in turn, affects the policy
representation. Moreover, if the user wishes to experiment different reward functions, she would
have to change them directly in the environment definition.

The above procedure is not efficient and does not scale. A better approach is to have the state to
change its dimensionality automatically as the robot varies, and the neural network policy architec-
ture to adapt accordingly. The reward function could be defined outside the environment and then
provided to it. This lack of simplicity, modularity and flexibility along with the lack of a common
framework regrouping different learning paradigms is what motivated us to create PyRoboLearn. We
adopt a modular and SOLID programming approach [20], abstract important concepts, minimize the
dependencies between modules, and favor composition over inheritance to increase flexibility. Py-
RoboLearn provides diverse environments, learning models and algorithms, and permits to easily
and quickly experiment ideas by combining diverse features and modules.

2 Related Work

To reach high usability, our framework is written in Python and uses the PyTorch library [11] as
backend. Frameworks in other languages are often prone to errors and not beginner-friendly. As
such, we do not review the literature of frameworks written in other languages. In general, robot
learning frameworks can be mainly categorized as: environment-based and model-based. We start
by reviewing the literature of environment-based frameworks.

In IL, few environments have been proposed, notably SMILE [8] and the Freiberg Robot Simula-
tor [9]1, but both focus on specific robotic platforms and use different programming languages. In
contrast, multiple environments have been proposed for RL. One of the most used frameworks is
OpenAI Gym [2] from which other frameworks have derived. OpenAI Gym provides environments
in games, control, and robotics. Each one inherits from the abstract Gym environment class, and
defines the world, the agents, the states-actions, and the reward function inside its class. Inheritance
is used over composition which limits flexibility as a new environment has to be created for each
combination of worlds (including the agents), states and rewards. OpenAI Gym and the DeepMind
control suite [5], use MuJoCo [21]. Since MuJoCo requires a license, Zamora et al. [3] extended the
Gym framework with Gazebo and ROS. OpenAI later released roboschool [4], a free robotic frame-
work to test RL algorithms. Built on the PyBullet [6] simulator, PyBullet-gym [7] was recently
released. All these frameworks focus on RL and most inherit from the OpenAI gym, following the
same protocol.

Few other frameworks such as Carla [10] and Airsim [22] support both IL and RL, but are designed
for autonomous vehicles. Another new framework closely related to ours is Surreal [23] which also
supports IL and RL, but focuses only on manipulation tasks using the Baxter and Sawyer robots
in MuJoCo. Other frameworks include the Gibson Environment [24] which focuses on perception
learning and sim-to-real policy transfer, and the S-RL toolbox [25] which focuses on state represen-
tation learning. Both are out of the scope of the covered learning paradigms in this paper.

We now turn our attention to frameworks that provide models and algorithms. Several libraries have
been proposed such as Sklearn [26], TensorFlow [27], PyTorch [11], GPyTorch [12], among others.
As they use different backends (e.g. Numpy, TensorFlow or PyTorch), the models defined in one

1We tried to find this simulator online unsuccessfully.
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cannot use algorithms of the others. In our framework, we provide a common interface to existing
models, and reimplement models that were not compatible. In RL, Garage (previously known as
rllab) [15], baselines [28], and RLlib [14] are three popular libraries that provide out-of-the-box
RL algorithms. The first two are coded in TensorFlow, while the latter is built on PyTorch. As
for the environments, these model-based frameworks define their own standard which do not fit our
modular framework. The main reasons being that learning algorithms are dependent of low-level
concepts such as the environment and policies (i.e. models) making a possible integration harder.

Recently, two new Python robot frameworks have been introduced: PyRobot [29] and PyRep [30].
The former provides a lightweight interface built on top of Gazebo-ROS [31, 32] with a focus on
robotic manipulation and navigation, while the latter provides a Python wrapper around the V-REP
simulator [33]. As our framework, they aim to be beginner-friendly but are mainly focused on
the robotic application instead of being a complete robot learning framework. They can be better
compared to a simulator such as PyBullet or MuJoCo.

3 Proposed Framework

PyRoboLearn (PRL) is designed to maximize modularity, flexibility, simplicity, and generality. Our
first choice is the programming language. We choose Python2 because of its simplicity to prototype
new ideas, a fast learning curve, a huge amount of available libraries, and the ability to interact with
the code. We also use PyTorch and Numpy for our learning models and algorithms. PyTorch is
chosen because of its Pythonic nature, modularity and popularity in research.

Regarding PyRoboLearn architecture, we abstract each robot learning concept, adopt a modular pro-
gramming approach, minimize the modules coupling, and favor composition over inheritance [34]
to increase the flexibility [35]. Abstraction aims at identifying and abstracting different concepts
into objects, and building high-level concepts on top of low-level ones. Modularity separates these
concepts into independent and interchangeable building blocks that represent or implement a partic-
ular functionality. Composition combines different modules and thus different functionalities into
a single one. Coupling measures how different modules depend on each other. A high coupling
between two modules means they cannot work in a stand-alone fashion, while a low coupling means
they depend on abstractions instead of concretions [20]. The aforementioned notions increase the
framework flexibility while facilitating the reuse and integration of the various modules.

PRL functionalities cover seven main axes: simulators, worlds, robots, learning paradigms, inter-
faces, learning models, and learning algorithms. Each of these components is described next. An
overview of the framework is depicted in Fig. 1.

Figure 1: Overview of the PyRoboLearn architecture. Dashed bubbles are possible additions.

2PyRoboLearn works in Python 2.7, 3.5, and 3.6, and has been tested on Ubuntu 16.04 and 18.04. While
the support for Python 2.7 will end in 2020, many libraries used in robotics still depend on it.
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3.1 Simulators

The first axis is the specification of the simulator. Different simulators have been proposed:
Gazebo [31] (with ROS [32]), V-REP/PyRep [33, 30], Webots [36], Bullet/PyBullet [37, 6], and
MuJoCo [21] (the most popular). We choose to work with PyBullet as it works in Python, and it is
free and open-source. To avoid our code to be fully dependent on it, we provide an abstract interface
that lies between the simulator and our framework such that any other simulators can inherit, allow-
ing for easy integration in the future (e.g., MuJoCo or Gazebo through ROS). Due to its popularity,
gym [2] was also wrapped inside PRL, to make it suitable with our framework in RL scenarios.

3.2 Worlds and Robots

Once a simulator is provided, a world where robots and objects can interact is required. Only the
world and robot instances interact with the simulator. The PyBullet simulator permits to load meshes
in the world but does not provide any tool to generate terrains. This missing feature is important for
robot locomotion tasks. We address this issue by providing tools to automatically generate height
maps, which are subsequently used to produce meshes that are then loaded into the simulator.

Robots are the active agents in our world, and more than 60 robots are provided in PRL. All inherit
from a main robot class and are split into different categories: manipulators, legged robots, wheeled
robots, UAVs, among others. Each of these categories is then divided in further subcategories. For
instance, the legged robot class is inherited by classes representing biped, quadruped, and hexapod
robots. Kinematic and dynamic functions allowing for motion and torque control are provided
through the main interface. We access online the URDF files of more than 60 robots and implement
their corresponding classes through our framework (see Fig. 2). This unified structure of robotic
platforms allows users to experiment rapidly with learning paradigms such as transfer learning.

Figure 2: 7 of the 60+ available robots in PRL: manipulators, wheeled and legged robots.

3.3 Tasks and Learning Paradigms

Robot learning [1] is usually understood as the intersection of machine learning and robotics. This
is divided into different learning paradigms according to different scenarios. The main categories
are imitation learning (IL) and reinforcement learning (RL). IL [17] envisions a teacher demonstrat-
ing to an agent how to reproduce a task through few examples. RL [18, 19] conceives an agent
that learns to perform a task by maximizing a total reward while interacting with its environment.
Other paradigms include transfer learning [38, 39] where the knowledge acquired by an agent while
solving a problem is transferred to solve a similar problem, and active learning [40] where an agent
interacts with the user by querying new information about the task (e.g. demonstrations). While
the foregoing approaches address different learning problems, they all share some common features
(e.g. states, actions, policies and environments) which are conceptualized and abstracted in PRL.
Similarly, their differences are introduced without loss of scalability through modules and composi-
tion. Additionally, different learning paradigms are evaluated using different metrics. To represent
a learning paradigm, we describe it by an abstract Task class which encapsulates the environment
and the policy. A task inheriting from this class is then formulated for each paradigm as needed.

3.4 Interfaces and Bridges

In IL, two predominant techniques are used to teach a robot a skill in order to perform a task:
teleoperation and kinesthetic teaching. Teleoperation consists of commanding a robotic platform
through a controller (from a remote location or in a virtual environment), while kinesthetic teaching
considers a human guiding physically the robot (or a part of it) to perform the task. While the former
is popular for its simplicity and use in simulation, it becomes difficult to use for robots with complex
structures (such as humanoid robots). Recent advances in computer vision allow us to use cameras
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Interface Instances
PC hardware keyboard and mouse, SpaceMouse
audio/speech speech recognition, synthesization, and translation

camera webcam, asus-xtion, kinect, openpose
game controllers Xbox, Playstation

sensors Leap Motion, Myo Armband
Table 1: The various interfaces in PyRoboLearn

to control the robot, however the human-robot kinematic mapping remains a challenge. As for the
latter, it has been hardly applied in simulations due to the lack of tools and haptic feedback.

In PRL, several interfaces have been implemented to enable the user to interact with the world and
its objects, including robots. The implemented interfaces are resumed in Table 1. These tools are
useful for different tasks and scenarios, especially in imitation and active learning. All the interfaces
are completely independent of our framework and can be used in other applications. They act as
containers for the collected data from the corresponding hardwares. Bridges connect an interface
with a component, such as the world or an element in that world. For instance, a game controller
interface permits to get data from the hardware, process it, and store it. The bridge can then map a
specific controller event to a robot action. Moving a joystick up could mean to move a wheeled robot
forward, or make a UAV robot ascend in the air. This separation of interfaces and bridges allows the
user to only implement the necessary bridge without reimplementing the associated interface.

3.5 Learning Models

We implement several learning models in our framework through a modular approach. Learning
models are characterized by (hyper-)parameters that are optimized through a training algorithm. All
the implemented models are decoupled from PRL and can be used in other frameworks. To provide
a better integration with the various modules in PRL, we build two abstraction layers on top of the
models. The first layer extends the models by receiving any created state and action module as inputs
and/or outputs (in addition to normal Numpy arrays or Pytorch tensors). The second layer focuses
on particular instances of these extended models, for example, a policy that receives as input the
states and outputs the actions, or a state value-function approximator which receives a state as input
and outputs a scalar value. In our framework the learning models are separated from the learning
algorithms (see 3) to avoid the models to be dependent on the training approach.

The provided learning models are reported in Table 2.

Type Instances
Movement Primitives central pattern generators (CPGs) [41], dynamic movement primitives

(DMPs) [42], probabilistic movement primitives (ProMPs) [43], and kernelized
movement primitives (KMPs) [44]

Function Approximators linear and polynomial models, Gaussian processes (GPs) [45, 12], Gaussian
mixture models (GMMs) [46], and deep neural networks (DNNs) [47, 11]
Table 2: The various models in PyRoboLearn

3.6 Learning Algorithms

RL algorithms [18] depend on the structure of the environments/tasks, policies and models. There-
fore, dependencies among them are unavoidable. We implement them in a modular way to stay con-
sistent with PRL. To illustrate the modularity, let us consider the model-free PPO algorithm [48].
This algorithm has a lot in common with many other model-free on-policy algorithms but uses a
different loss and action-space exploration strategy. This is often not exploited in current frame-
works. In PRL, the loss can be redefined, any arithmethic operations can be performed on these
loss instances, and provided at runtime to the PPO algorithm (through composition) without loss of
generality. This results in faster experimentation to compare loss functions.

Because of the modular programming approach we undertake, we provide a different module for
every concept, including the loss and exploration strategy. Moreover, as we favor composition over
inheritance, we can parametrize the PPO algorithm with these modules, resulting in a more flexible
framework that allows users to modify the algorithms and experiment with a wider range of com-
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Figure 3: Reproduction of a trajectory learned from mouse-generated demonstrations using a DMP

binations. The learning algorithms available in PRL include Bayesian optimization, evolutionary
algorithms, model-free (on-/off-) policy search, among others.

4 Experiments

In order to show the functionality of our framework for robot learning, we demonstrate three use
cases; an IL scenario, an RL task, and a scenario which combines these two approaches to show the
flexibility of our framework.

4.1 Imitation Learning Task: Trajectory Tracking

The goal is to reproduce a demonstrated trajectory with IL using a dynamic movement primitive
(DMP) model on a KUKA-LWR robot. The trajectories are demonstrated using the mouse interface
(see Fig. 3). Both the training and reproduction phases can be watched in the video accompanying
this paper. The associated pseudo-code is given below in Algorithm 1.

Algorithm 1 Trajectory tracking with imitation learning
1: sim = Simulator()
2: world = BasicWorld(sim)
3: robot = world.load(‘robot name or class’)
4: state = PhaseState()
5: action = JointPositionAction(robot)
6: env = Env(world, state)
7: policy = Policy(state, action)
8: recorder = Recorder(state, action, rate)
9: interface = MouseKeyboardBridge(world)
10: task = ILTask(env, policy, interface, recorder)
11: task.record(signal from interface=True)
12: task.train()
13: task.test()

Algorithm 1 illustrates the various building blocks and how they encapsulate each other. In this
example, we first create an instance of the simulator, and then define a world in it. After this, a
robot is loaded into the world. Next, we define the states and actions that are given to the policy
and the environment. As we are in an IL setting, we need to collect and record the demonstrated
data through the use of a recorder. We provide the trajectories using the mouse interface. Finally,
an IL task can be fully defined with all the previous components. The step left is to train the policy
using the demonstrated trajectory and reproduce the policy. The last three lines can be replaced by
task.run(signal from interface=True) where the argument specifies that an event from the
interface will send a signal to indicate when to record the data, train, and test the policy. Note that
changes in the simulator, world, robot, state, action, policy, and/or interface would not affect the rest
of the code due to the abstractions and modularity of our framework. This confirms the flexibility of
PyRoboLearn.

4.2 Reinforcement Learning Task: Locomotion

We now test our framework on an RL locomotion task with the Minitaur quadruped robot using
central pattern generators where the hyperparameters are trained using Bayesian optimization [49]
(see Fig. 4 and associated video). The associated pseudocode is given in Algorithm 2.

Algorithm 2 shows that we can easily combine different rewards together. This feature is also
available for states, actions and other components in the framework. It is worth noting that some

6



Figure 4: Walking robot using RL Figure 5: Cartpole task solved through IL and RL

Algorithm 2 Locomotion RL task
1: sim = Simulator()
2: world = BasicWorld(sim)
3: robot = world.load(‘robot name’)
4: states = PhaseState()
5: actions = JointPositionAction(robot)
6: rewards = a * Reward1(state) + b * Reward2(state)
7: env = Env(world, states, rewards)
8: policy = Policy(states, actions)
9: task = RLTask(env, policy)
10: algo = RLAlgo(task, policy, hyperparameters)
11: results = algo.train(num steps, num episodes)
12: final reward = algo.test(num steps)

states may depend on the considered robotic platform. For instance, a CameraState can only be
applied to a robot that has at least one onboard camera. If the robot does not have any, this state will
be empty but the code will still run smoothly given that the policy and reward can take care of such
situations. Nevertheless, our framework keeps its simplicity and flexibility in this example. This
modularity and generality also applies to other components in the framework like RL algorithms
where we can change the loss function. These RL tasks can also be combined with previous IL tasks
as shown in the next section.

Regarding the use of OpenAI-Gym within PRL, our wrapper avoids coding the lines 1 until 6 in the
Algorithm 2, and line 7 can be replaced by env = wrapped gym.make(’env name’). The states
and actions given to the policy can then be accessed via env.state and env.action.

4.3 Imitation and Reinforcement Learning

In this example, we illustrate how we can combine different learning paradigms. Here, IL is first
used to initialize a policy, which is then fine-tuned by an RL approach. We test this feature on the
cartpole task where the goal is to lift up a pole, initially facing downwards, by moving the cart left
to right. We first provide few demonstrations using the mouse in slow-motion mode, and then train
the policy using the obtained dataset. The policy is then refined using the PoWER reinforcement
learning algorithm [50] where the initialization plays an important role (see Fig. 5 and the associated
video). Algorithm 3 shows how an RL task can easily be defined after an IL task. In this pseudo-
code, we assume that the simulator, world, robot, states, actions, rewards, policy and environment
were created before, as done in Algorithm 2.

Algorithm 3 IL task followed by a finetuning using RL
1: il task = ILTask(env, policy, interface, recorder)
2: il task.record(signal from interface=True)
3: il task.train()
4: rl task = RLTask(env, policy)
5: initial reward = rl task.run(num steps)
6: algo = RLAlgo(rl task, policy, hyperparameters)
7: results = algo.train(num steps, num episodes)
8: final reward = algo.test(num steps)

5 Discussion

The proposed framework suffers from few shortcomings for production development. The first one
is the programming language that makes it not suitable for real-time tasks. A Python wrapper around
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the simulator has to be provided to be used with our framework (by implementing the Simulator
interface). Nevertheless, based on its fast-learning curve, huge number of available libraries, its
acceptance in the research community, its ability to fast-prototype ideas, and its interactive mode,
we think that this trade-off is worthy.

The second limitation is that PRL cannot be used currently with real hardware to easily transfer a
piece of code working in simulation to real robots, or record trajectories from the real hardware.
We plan to provide a ROS integration in the future, where just the first line in previous algorithms
(Algorithm 1 and 2) would need to be replaced by sim = RBDL ROS(). However, a partial imple-
mentation of using ROS with Bullet called BulletROS is provided in PRL, but safety issues on the
real system has not been considered yet.

6 Conclusion

In this paper, we presented a first version of our generic Python framework for robot learning practi-
tioners. Design decisions made such as the consistent approach to abstract each concept, the prefer-
ence for composition over inheritance, and the minimization of couplings, renders our library highly
modular, flexible, generic and easily updatable. The implementation of different paradigms, as well
as the availability of different learning models, algorithms, robots and interfaces, allows to prototype
faster different ideas and compare them with previous approaches.

It is our hope that the proposed framework will be useful to researchers, scholars and students in
robot learning, and will be a step towards better benchmarks and reproducibility [51]. The link to
the Github repository, documentation, examples, and videos are available through the main website
https://robotlearn.github.io/pyrobolearn/. PRL is currently released under the GPLv3
license, and has been tested on Ubuntu 16.04 and 18.04 with Python 2.7, 3.5, and 3.6 3.

Future work will address the various aforementioned shortcomings. In addition, we plan to continue
to provide other simulator APIs, learning paradigms, algorithms, and robotic tools such as state
estimators and controllers. Finally, we plan to reproduce other state-of-the-art experiments, provide
benchmarks, and present the obtained results on an interactive centralized website.
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Appendix A: Comparison with other Environment Frameworks

A table summarizing parts of the different characteristics of current robot learning frameworks that
provide environments is depicted in Table 3. Note that MuJoCo [21] is not open-source, requires a
license, and depending on that last one might not be free. Also note that while the support for Python
2.7 will end in 2020, some simulators such as Gazebo-ROS and some libraries are still dependent
on Python 2.7.

Name OS Python Simulator Paradigm Robot Problem
Open-AI Gym [2] OSX, Linux 2.7, 3.5 MuJoCo RL 3D chars Manip./Loco.
Gym-Gazebo [3] Ubuntu 18.04 3 Gazebo+ROS RL <5 robots Manip./Nav.

DeepMind Control Suite [5] Ubuntu 14.04/16.04 2.7, 3.5 MuJoCo RL 3D chars Loco./Control
Roboschool [4] OSX, Ubuntu/Debian 3 Bullet RL 3D chars Loco./Control

Pybullet Gym [6, 7] OSX, Linux, Windows 2.7, 3.5 PyBullet RL 3d chars/Atlas Manip./Loco./Control
GibsonEnv [24] Ubuntu 3.5 Bullet PL/RL 3D chars/5 robots Perception/Nav.

Airsim [22] Linux, Windows 3.5+ Unreal Engine/Unity IL/RL AV Nav.
Carla [10] Ubuntu 16.04+, Windows 2.7, 3.5 Unreal Engine IL/RL AV Nav.

Surreal Robotics Suite [23] OSX, Linux 3.5, 3.7 MuJoCo IL/RL Baxter/Sawyer Manip.
S-RL Toolbox [25] N/S 3.5+ PyBullet RL/SRL Kuka/OmniRobot Manip./Nav.

PyRoboLearn Ubuntu 16.04/18.04 2.7, 3.5, 3.6 Agnostic (PyBullet) IL/RL 60+ Manip./Loco./Control

Table 3: Comparisons between different robot learning frameworks that provide environments. PL
stands for perception learning, SRL for state representation learning, and AV for autonomous vehi-
cles.
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