
Riemannian Manifold Learning for Robot Motion Skills

Hadi Beik-Mohammadi1, Leonel Rozo1, Gerhard Neumann2, Søren Hauberg3

I. INTRODUCTION
Bringing geometric methods to robot learning provides an

alternative view of how data may be processed, encoded, and
synthesized. This opens the door to investigate and exploit
the interplay of geometry, machine learning, and control for
learning complex robot skills. When learning robot motion
skills, one can assume that observed (high-dimensional) data
may lie on a lower intrinsic dimensionality due to constraints
on the way the data is generated. For example, a robot arm is
constrained in its set of feasible configurations, which may
imply that end-effector trajectories lie on a low-dimensional
manifold. To build effective geometry-aware motion skills,
we can learn a skill manifold from demonstrations, which
are encoded in a low-dimensional latent space. Subsequently,
we can exploit this manifold to generate new motions via
geodesics while considering ambient space constraints, e.g.,
obstacle avoidance, on the fly.

II. MOTION SKILLS LEARNING VIA
RIEMANNIAN MANIFOLDS

A. Background

1) Variational autoencoders: One probabilistic approach
to learn data manifolds is variational autoencoders (VAE)
[1], that can be seen as a probabilistic generalization of
classic autoencoders [2]. The VAE realizes the generative
model

p(z) = N (z|0, I) , z ∈ Rd (1)

p(x|z) = N
(
x|µ(z), σ2(z)

)
, x ∈ RD (2)

where d < D. Here the latent variable z can be viewed
as a lower dimensional representation of the data x. In
practice, the functions µ, σ : Rd → RD are represented by
neural networks, and inference is performed variationally by
maximizing the evidence lower bound (ELBO)

L = Eq(z|x) [log(p(x|z))]−KL (q(z|x)||p(z))) , (3)

where the approximate posterior (encoder)

q(z|x) = N
(
z|µq(x), σ

2
q (x)

)
(4)

is also a neural network.

*This work was supported in part by the European Research Council
(ERC) under the European Union’s Horizon 2020 research and innovation
programme (grant agreement no 757360) and by a research grant (15334)
from VILLUM FONDEN.

1Bosch Center for Artificial Intelligence (BCAI)
(hadi.beik-mohammadi, leonel.rozo)@de.bosch.com

2 Autonomous Learning Robots Lab, Karlsruhe Institute of Technology
(KIT) gerhard.neumann@kit.edu

3 Section for Cognitive Systems, Technical University of Denmark (DTU)
sohau@dtu.dk

Geodesic

Demonstration
Manifold

Demonstrations

Fig. 1: Demonstration manifold generated using a VAE.

2) Riemannian geometry in VAEs: In general, the latent
representation recovered by a VAE is not unique [3]. Assum-
ing that the mean generator (decoder) network µ(z) has suffi-
cient capacity, then the latent representation can be distorted
into z̃ = g(z) by an unknown function g : Rd → Rd and
the decoder may adapt to µ(g−1(z̃)). This implies that latent
space distances are largely meaningless [3], which limits the
value of the representation for robot learning. Arvanitidis et
al. [4] proposed to endow the latent representation with a
Riemannian metric to avoid this issue. In particular, they
suggest using the pullback metric, such that distances in
latent space now reflect curve lengths measured along the
estimated manifold in data space. Letting f denote the
mapping from representation to observation, the length of
a curve c : [0, 1]→ Rd in latent space can be defined as

Length[c] =
∫ 1

0

‖∂tf(ct)‖dt (5)

and the distance between two latent points can be defined as
the length of the shortest connecting path.

The generative process of a VAE can be written as

x = µ(z) + σ(z)� ε, ε ∼ N (0, I) (6)

=
(
I, diag(ε)

)(µ(z)
σ(z)

)
= P f(z), (7)

such that we may view the VAE as spanning a manifold (via
f) in R2D, which is then randomly projected to data space
(via P) [5]. Following existing literature [3], [4] we exploit
f to define distances (5). If σ takes large values in regions of
latent space where data is limited, then curves going through
regions with little data will generally be long, and shortest
paths, i.e., geodesics, will avoid such regions. To ensure that

-0.4

-0.3

-0.2

-0.1

0.0

0.1

0.2

0.3

0.4

-0.4

-0.3

-0.2

-0.1

0.0

0.1

0.2

0.3

0.4

Z2

Z2

-0.4 -0.2 0.0 0.2 0.4
Z1

Fig. 2: Geodesics generated in two different scenarios with and without
obstacle. The gray points show the training set projected in the latent space.
The orange shape is the projection of the wire-frame sphere obstacle.

σ displays this behavior, we follow Arvanitidis et al. [4] and
use an RBF network for its implementation.

B. Geodesics for motion generation

As geodesics in the latent space tend to follow the trend
of data, we suggest using these to generate robot motions
that resemble the collected demonstrations. To realize this
idea, we train a VAE on a set of robot demonstrations to get
a representation that reflects the motion patterns. Note that
these demonstrations are collected without any obstacles in
place, that is, the robot is not trained with obstacle-avoiding
movements.

Obstacle avoidance: Our goal is to eventually allow
for dynamic obstacles, which we realize by exploiting a
Riemannian metric in ambient space, which displays large
distances in regions of obstacles. The resulting geodesic
should then avoid these obstacles. For simplicity, we place
a Gaussian “bump” at each obstacle

m(x) = 1 + 1000 exp

(
−‖x− o‖2

2r2

)
, x ∈ R3, (8)

where the obstacle has center and radius (o, r). We may
interpret this as a Riemannian metric m(x) · I .

As we place this metric over the ambient space, we may
extend the definition of curve length in latent space to

incorporate such a metric [6]

Length[c] =
∫ 1

0

√
m (f(ct)) · ‖∂tf(ct)‖dt. (9)

This way, the geodesics can adapt to new or dynamic
obstacles with no additional learning.

III. EXPERIMENTS

A VAE was trained using the positions x ∈ R3 in the
task-space demonstrations where the orientations were not
considered due to the difficulties caused by approximating
unit quaternions using probabilistic methods. Next, the points
were shuffled and encoded independently into the latent
space R2. Fig. 1 shows an example of demonstrating a task,
where an object is located in the robot workspace. Here, the
demonstrations show how to avoid this initial obstacle and
reach the point behind it.

The demonstrations were recorded separately, passing by
two different sides of the obstacle using a 7-DoF KUKA
IIWA and Pyrobolearn [7]. Each of the possible paths was
demonstrated 10 times, which makes a total of 20 demon-
strations. After training, two points were randomly selected
from the test set and the corresponding geodesic between
them was generated. To test obstacle avoidance, a new sphere
obstacle was added at a random position.

A. Results

Our results show that our approach learns the data man-
ifold, which can be used to generate similar motions by
exploiting geodesics generated on the learned Riemannian
manifold. As Fig. 1 shows, the RBF network learned to cor-
rectly construct a data manifold by assigning high variance
to the regions with sparse data and low variance to regions
with higher data density. Fig. 2 shows generated geodesics
for 2 different scenarios with and without obstacle. The
final geodesics correctly avoid the new obstacle meanwhile
respecting the geometry of the learned data manifold.

IV. FUTURE WORK

In our future work, we will consider that obstacles can
be explicitly modeled and behave dynamically. For more
realistic applications, we will extend our approach to handle
the end-effector orientations.

REFERENCES

[1] D. P. Kingma and M. Welling, “Auto-encoding variational Bayes.,” in
ICLR, 2014.

[2] P. Baldi, “Autoencoders, unsupervised learning, and deep architectures,”
in ICML Wokshop on Unsupervised and Transfer Learning, 2012.

[3] S. Hauberg, “Only Bayes should learn a manifold (on the estimation of
differential geometric structure from data),” in arXiv preprint, 2018.

[4] G. Arvanitidis, L. K. Hansen, and S. Hauberg, “Latent space oddity:
on the curvature of deep generative models,” ICLR, 2018.

[5] D. Eklund and S. Hauberg, “Expected path length on random mani-
folds,” in arXiv preprint, 2019.

[6] G. Arvanitidis, S. Hauberg, and B. Schölkopf, “Geometrically enriched
latent spaces,” in arXiv preprint, 2020.

[7] B. Delhaisse, L. Rozo, and D. G. Caldwell, “Pyrobolearn: A Python
framework for robot learning practitioners,” in CoRL, 2019.

